Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PromptMTopic: Unsupervised Multimodal Topic Modeling of Memes using Large Language Models (2312.06093v1)

Published 11 Dec 2023 in cs.CL, cs.CV, and cs.MM

Abstract: The proliferation of social media has given rise to a new form of communication: memes. Memes are multimodal and often contain a combination of text and visual elements that convey meaning, humor, and cultural significance. While meme analysis has been an active area of research, little work has been done on unsupervised multimodal topic modeling of memes, which is important for content moderation, social media analysis, and cultural studies. We propose \textsf{PromptMTopic}, a novel multimodal prompt-based model designed to learn topics from both text and visual modalities by leveraging the LLMing capabilities of LLMs. Our model effectively extracts and clusters topics learned from memes, considering the semantic interaction between the text and visual modalities. We evaluate our proposed model through extensive experiments on three real-world meme datasets, which demonstrate its superiority over state-of-the-art topic modeling baselines in learning descriptive topics in memes. Additionally, our qualitative analysis shows that \textsf{PromptMTopic} can identify meaningful and culturally relevant topics from memes. Our work contributes to the understanding of the topics and themes of memes, a crucial form of communication in today's society.\ \red{\textbf{Disclaimer: This paper contains sensitive content that may be disturbing to some readers.}}

Citations (7)

Summary

We haven't generated a summary for this paper yet.