Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Small Schwarzschild de Sitter black holes, the future boundary and islands (2312.05904v2)

Published 10 Dec 2023 in hep-th

Abstract: We continue the study of 4-dimensional Schwarzschild de Sitter black holes in the regime where the black hole mass is small compared with the de Sitter scale, following arXiv:2207.10724 [hep-th]. The de Sitter temperature is very low compared with that of the black hole. We consider the future boundary as the location where the black hole Hawking radiation is collected. Using 2-dimensional tools, we find unbounded growth of the entanglement entropy of radiation as the radiation region approaches the entire future boundary. Self-consistently including appropriate late time islands emerging just inside the black hole horizon leads to a reasonable Page curve. We also discuss other potential island solutions which show inconsistencies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (144)
  1. S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev. D 14, 2460-2473 (1976) doi:10.1103/PhysRevD.14.2460
  2. S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43, 199-220 (1975) [erratum: Commun. Math. Phys. 46, 206 (1976)] doi:10.1007/BF02345020
  3. S. D. Mathur, “The Information paradox: A Pedagogical introduction,” Class. Quant. Grav. 26, 224001 (2009) doi:10.1088/0264-9381/26/22/224001 [arXiv:0909.1038 [hep-th]].
  4. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, “Black Holes: Complementarity or Firewalls?,” JHEP 02, 062 (2013) doi:10.1007/JHEP02(2013)062 [arXiv:1207.3123 [hep-th]].
  5. D. N. Page, “Information in black hole radiation,” Phys. Rev. Lett. 71, 3743-3746 (1993) doi:10.1103/PhysRevLett.71.3743 [arXiv:hep-th/9306083 [hep-th]].
  6. D. N. Page, “Time Dependence of Hawking Radiation Entropy,” JCAP 09, 028 (2013) doi:10.1088/1475-7516/2013/09/028 [arXiv:1301.4995 [hep-th]].
  7. G. Penington, “Entanglement Wedge Reconstruction and the Information Paradox,” JHEP 09, 002 (2020) doi:10.1007/JHEP09(2020)002 [arXiv:1905.08255 [hep-th]].
  8. A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, “The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole,” JHEP 12, 063 (2019) doi:10.1007/JHEP12(2019)063 [arXiv:1905.08762 [hep-th]].
  9. A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, “The Page curve of Hawking radiation from semiclassical geometry,” JHEP 03, 149 (2020) doi:10.1007/JHEP03(2020)149 [arXiv:1908.10996 [hep-th]].
  10. G. Penington, S. H. Shenker, D. Stanford, Z. Yang, “Replica wormholes & the black hole interior,” [arXiv:1911.11977[hep-th]].
  11. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, “Replica Wormholes and the Entropy of Hawking Radiation,” JHEP 05, 013 (2020) [arXiv:1911.12333 [hep-th]].
  12. T. Faulkner, A. Lewkowycz and J. Maldacena, “Quantum corrections to holographic entanglement entropy,” JHEP 1311, 074 (2013) doi:10.1007/JHEP11(2013)074 [arXiv:1307.2892 [hep-th]].
  13. N. Engelhardt and A. C. Wall, “Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime,” JHEP 01, 073 (2015) doi:10.1007/JHEP01(2015)073 [arXiv:1408.3203 [hep-th]].
  14. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett.  96, 181602 (2006) [hep-th/0603001].
  15. S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,” JHEP 0608, 045 (2006) [hep-th/0605073].
  16. V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant holographic entanglement entropy proposal,” JHEP 0707 (2007) 062 [arXiv:0705.0016 [hep-th]].
  17. M. Rangamani and T. Takayanagi, “Holographic Entanglement Entropy,” Lect. Notes Phys.  931, pp.1 (2017) [arXiv:1609.01287 [hep-th]].
  18. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, “The entropy of Hawking radiation,” [arXiv:2006.06872 [hep-th]].
  19. S. Raju, “Lessons from the Information Paradox,” [arXiv:2012.05770 [hep-th]].
  20. B. Chen, B. Czech and Z. z. Wang, “Quantum Information in Holographic Duality,” [arXiv:2108.09188 [hep-th]].
  21. A. Almheiri, R. Mahajan and J. Maldacena, “Islands outside the horizon,” [arXiv:1910.11077 [hep-th]].
  22. H. Z. Chen, Z. Fisher, J. Hernandez, R. C. Myers and S. M. Ruan, “Information Flow in Black Hole Evaporation,” JHEP 03, 152 (2020) doi:10.1007/JHEP03(2020)152 [arXiv:1911.03402 [hep-th]].
  23. A. Almheiri, R. Mahajan and J. E. Santos, “Entanglement islands in higher dimensions,” SciPost Phys. 9, no.1, 001 (2020) doi:10.21468/SciPostPhys.9.1.001 [arXiv:1911.09666 [hep-th]].
  24. F. F. Gautason, L. Schneiderbauer, W. Sybesma and L. Thorlacius, “Page Curve for an Evaporating Black Hole,” JHEP 05, 091 (2020) doi:10.1007/JHEP05(2020)091 [arXiv:2004.00598 [hep-th]].
  25. T. Anegawa and N. Iizuka, “Notes on islands in asymptotically flat 2d dilaton black holes,” JHEP 07, 036 (2020) doi:10.1007/JHEP07(2020)036 [arXiv:2004.01601 [hep-th]].
  26. K. Hashimoto, N. Iizuka and Y. Matsuo, “Islands in Schwarzschild black holes,” JHEP 06, 085 (2020) doi:10.1007/JHEP06(2020)085 [arXiv:2004.05863 [hep-th]].
  27. T. Hartman, E. Shaghoulian and A. Strominger, “Islands in Asymptotically Flat 2D Gravity,” JHEP 07, 022 (2020) doi:10.1007/JHEP07(2020)022 [arXiv:2004.13857 [hep-th]].
  28. T. J. Hollowood and S. P. Kumar, “Islands and Page Curves for Evaporating Black Holes in JT Gravity,” JHEP 08, 094 (2020) doi:10.1007/JHEP08(2020)094 [arXiv:2004.14944 [hep-th]].
  29. C. Krishnan, V. Patil and J. Pereira, “Page Curve and the Information Paradox in Flat Space,” [arXiv:2005.02993 [hep-th]].
  30. M. Alishahiha, A. Faraji Astaneh and A. Naseh, “Island in the presence of higher derivative terms,” JHEP 02, 035 (2021) doi:10.1007/JHEP02(2021)035 [arXiv:2005.08715 [hep-th]].
  31. H. Geng and A. Karch, “Massive islands,” JHEP 09, 121 (2020) doi:10.1007/JHEP09(2020)121 [arXiv:2006.02438 [hep-th]].
  32. T. Li, J. Chu and Y. Zhou, “Reflected Entropy for an Evaporating Black Hole,” JHEP 11, 155 (2020) doi:10.1007/JHEP11(2020)155 [arXiv:2006.10846 [hep-th]].
  33. X. Dong, X. L. Qi, Z. Shangnan and Z. Yang, “Effective entropy of quantum fields coupled with gravity,” JHEP 10, 052 (2020) doi:10.1007/JHEP10(2020)052 [arXiv:2007.02987 [hep-th]].
  34. H. Z. Chen, Z. Fisher, J. Hernandez, R. C. Myers and S. M. Ruan, “Evaporating Black Holes Coupled to a Thermal Bath,” JHEP 01, 065 (2021) doi:10.1007/JHEP01(2021)065 [arXiv:2007.11658 [hep-th]].
  35. Y. Ling, Y. Liu and Z. Y. Xian, “Island in Charged Black Holes,” JHEP 03, 251 (2021) doi:10.1007/JHEP03(2021)251 [arXiv:2010.00037 [hep-th]].
  36. Y. Matsuo, “Islands and stretched horizon,” JHEP 07, 051 (2021) [arXiv:2011.08814 [hep-th]].
  37. K. Goto, T. Hartman and A. Tajdini, “Replica wormholes for an evaporating 2D black hole,” JHEP 04, 289 (2021) doi:10.1007/JHEP04(2021)289 [arXiv:2011.09043 [hep-th]].
  38. I. Akal, Y. Kusuki, N. Shiba, T. Takayanagi and Z. Wei, “Entanglement Entropy in a Holographic Moving Mirror and the Page Curve,” Phys. Rev. Lett. 126, no.6, 061604 (2021) doi:10.1103/PhysRevLett.126.061604 [arXiv:2011.12005 [hep-th]].
  39. H. Geng, A. Karch, C. Perez-Pardavila, S. Raju, L. Randall, M. Riojas and S. Shashi, “Information Transfer with a Gravitating Bath,” SciPost Phys. 10, no.5, 103 (2021) doi:10.21468/SciPostPhys.10.5.103 [arXiv:2012.04671 [hep-th]].
  40. F. Deng, J. Chu and Y. Zhou, “Defect extremal surface as the holographic counterpart of Island formula,” JHEP 03, 008 (2021) doi:10.1007/JHEP03(2021)008 [arXiv:2012.07612 [hep-th]].
  41. G. K. Karananas, A. Kehagias and J. Taskas, “Islands in linear dilaton black holes,” JHEP 03, 253 (2021) doi:10.1007/JHEP03(2021)253 [arXiv:2101.00024 [hep-th]].
  42. X. Wang, R. Li and J. Wang, “Islands and Page curves of Reissner-Nordström black holes,” JHEP 04, 103 (2021) doi:10.1007/JHEP04(2021)103 [arXiv:2101.06867 [hep-th]].
  43. E. Verheijden and E. Verlinde, “From the BTZ black hole to JT gravity: geometrizing the island,” JHEP 11, 092 (2021) doi:10.1007/JHEP11(2021)092 [arXiv:2102.00922 [hep-th]].
  44. K. Kawabata, T. Nishioka, Y. Okuyama and K. Watanabe, “Probing Hawking radiation through capacity of entanglement,” JHEP 05, 062 (2021) doi:10.1007/JHEP05(2021)062 [arXiv:2102.02425 [hep-th]].
  45. L. Anderson, O. Parrikar and R. M. Soni, “Islands with gravitating baths: towards ER = EPR,” JHEP 21, 226 (2020) doi:10.1007/JHEP10(2021)226 [arXiv:2103.14746 [hep-th]].
  46. A. Bhattacharya, A. Bhattacharyya, P. Nandy and A. K. Patra, “Islands and complexity of eternal black hole and radiation subsystems for a doubly holographic model,” JHEP 05, 135 (2021) doi:10.1007/JHEP05(2021)135 [arXiv:2103.15852 [hep-th]].
  47. W. Kim and M. Nam, “Entanglement entropy of asymptotically flat non-extremal and extremal black holes with an island,” Eur. Phys. J. C 81, no.10, 869 (2021) doi:10.1140/epjc/s10052-021-09680-x [arXiv:2103.16163 [hep-th]].
  48. K. Ghosh and C. Krishnan, “Dirichlet baths and the not-so-fine-grained Page curve,” JHEP 08, 119 (2021) doi:10.1007/JHEP08(2021)119 [arXiv:2103.17253 [hep-th]].
  49. X. Wang, R. Li and J. Wang, “Page curves for a family of exactly solvable evaporating black holes,” Phys. Rev. D 103, no.12, 126026 (2021) doi:10.1103/PhysRevD.103.126026 [arXiv:2104.00224 [hep-th]].
  50. R. Li, X. Wang and J. Wang, “Island may not save the information paradox of Liouville black holes,” Phys. Rev. D 104, no.10, 106015 (2021) doi:10.1103/PhysRevD.104.106015 [arXiv:2105.03271 [hep-th]].
  51. R. Li and J. Wang, “Hawking radiation and page curves of the black holes in thermal environment,” Commun. Theor. Phys. 73, no.7, 075401 (2021) doi:10.1088/1572-9494/abf823
  52. K. Kawabata, T. Nishioka, Y. Okuyama and K. Watanabe, “Replica wormholes and capacity of entanglement,” JHEP 10, 227 (2021) doi:10.1007/JHEP10(2021)227 [arXiv:2105.08396 [hep-th]].
  53. Y. Lu, J. Lin, “Islands in Kaluza–Klein black holes,” Eur. Phys. J. C 82, no.2, 132 (2022) [arXiv:2106.07845 [hep-th]].
  54. J. Kruthoff, R. Mahajan and C. Murdia, “Free fermion entanglement with a semitransparent interface: the effect of graybody factors on entanglement islands,” SciPost Phys. 11, 063 (2021) [arXiv:2106.10287 [hep-th]].
  55. M. H. Yu and X. H. Ge, “Islands and Page curves in charged dilaton black holes,” Eur. Phys. J. C 82, no.1, 14 (2022) doi:10.1140/epjc/s10052-021-09932-w [arXiv:2107.03031 [hep-th]].
  56. B. Ahn, S. E. Bak, H. S. Jeong, K. Y. Kim and Y. W. Sun, “Islands in charged linear dilaton black holes,” Phys. Rev. D 105, no.4, 046012 (2022) doi:10.1103/PhysRevD.105.046012 [arXiv:2107.07444 [hep-th]].
  57. X. Wang, K. Zhang and J. Wang, “What can we learn about islands and state paradox from quantum information theory?,” [arXiv:2107.09228 [hep-th]].
  58. I. Aref’eva and I. Volovich, “A Note on Islands in Schwarzschild Black Holes,” [arXiv:2110.04233 [hep-th]].
  59. S. He, Y. Sun, L. Zhao and Y. X. Zhang, “The universality of islands outside the horizon,” JHEP 05, 047 (2022) doi:10.1007/JHEP05(2022)047 [arXiv:2110.07598 [hep-th]].
  60. Y. Matsuo, “Entanglement entropy and vacuum states in Schwarzschild geometry,” JHEP 06, 109 (2022) doi:10.1007/JHEP06(2022)109 [arXiv:2110.13898 [hep-th]].
  61. F. Omidi, “Entropy of Hawking radiation for two-sided hyperscaling violating black branes,” JHEP 04, 022 (2022) doi:10.1007/JHEP04(2022)022 [arXiv:2112.05890 [hep-th]].
  62. R. Espíndola, B. Najian and D. Nikolakopoulou, “Islands in FRW Cosmologies,” [arXiv:2203.04433 [hep-th]].
  63. J. Tian, “Islands in Generalized Dilaton Theories,” [arXiv:2204.08751 [hep-th]].
  64. A. Laddha, S. G. Prabhu, S. Raju and P. Shrivastava, “The Holographic Nature of Null Infinity,” SciPost Phys. 10, no.2, 041 (2021) doi:10.21468/SciPostPhys.10.2.041 [arXiv:2002.02448 [hep-th]].
  65. H. Geng, A. Karch, C. Perez-Pardavila, S. Raju, L. Randall, M. Riojas and S. Shashi, “Inconsistency of Islands in Theories with Long-Range Gravity,” [arXiv:2107.03390 [hep-th]].
  66. I. Bena, E. J. Martinec, S. D. Mathur and N. P. Warner, “Fuzzballs and Microstate Geometries: Black-Hole Structure in String Theory,” [arXiv:2204.13113 [hep-th]].
  67. C. Krishnan, “Critical Islands,” JHEP 01, 179 (2021) doi:10.1007/JHEP01(2021)179 [arXiv:2007.06551 [hep-th]].
  68. Y. Chen, V. Gorbenko, J. Maldacena, “Bra-ket wormholes in gravitationally prepared states,” [arXiv:2007.16091 [hep-th]].
  69. T. Hartman, Y. Jiang and E. Shaghoulian, “Islands in cosmology,” JHEP 11, 111 (2020) doi:10.1007/JHEP11(2020)111 [arXiv:2008.01022 [hep-th]].
  70. M. Van Raamsdonk, “Comments on wormholes, ensembles, and cosmology,” arXiv:2008.02259[hep-th].
  71. V. Balasubramanian, A. Kar and T. Ugajin, “Islands in de Sitter space,” JHEP 02, 072 (2021) doi:10.1007/JHEP02(2021)072 [arXiv:2008.05275 [hep-th]].
  72. W. Sybesma, “Pure de Sitter space and the island moving back in time,” Class. Quant. Grav. 38, no.14, 145012 (2021) doi:10.1088/1361-6382/abff9a [arXiv:2008.07994 [hep-th]].
  73. A. Manu, K. Narayan and P. Paul, “Cosmological singularities, entanglement and quantum extremal surfaces,” JHEP 04, 200 (2021) doi:10.1007/JHEP04(2021)200 [arXiv:2012.07351 [hep-th]].
  74. S. Choudhury, S. Chowdhury, N. Gupta, A. Mishara, S. P. Selvam, S. Panda, G. D. Pasquino, C. Singha and A. Swain, “Circuit Complexity From Cosmological Islands,” Symmetry 13, 1301 (2021) [arXiv:2012.10234 [hep-th]].
  75. R. Bousso and A. Shahbazi-Moghaddam, “Island Finder and Entropy Bound,” Phys. Rev. D 103, no.10, 106005 (2021) doi:10.1103/PhysRevD.103.106005 [arXiv:2101.11648 [hep-th]].
  76. H. Geng, Y. Nomura and H. Y. Sun, “Information paradox and its resolution in de Sitter holography,” Phys. Rev. D 103, no.12, 126004 (2021) doi:10.1103/PhysRevD.103.126004 [arXiv:2103.07477 [hep-th]].
  77. S. Fallows and S. F. Ross, “Islands and mixed states in closed universes,” JHEP 07, 022 (2021) doi:10.1007/JHEP07(2021)022 [arXiv:2103.14364 [hep-th]].
  78. L. Aalsma and W. Sybesma, “The Price of Curiosity: Information Recovery in de Sitter Space,” JHEP 05, 291 (2021) doi:10.1007/JHEP05(2021)291 [arXiv:2104.00006 [hep-th]].
  79. D. Giataganas and N. Tetradis, “Entanglement entropy in FRW backgrounds,” Phys. Lett. B 820, 136493 (2021) doi:10.1016/j.physletb.2021.136493 [arXiv:2105.12614 [hep-th]].
  80. L. Aalsma, A. Cole, E. Morvan, J. P. van der Schaar and G. Shiu, “Shocks and information exchange in de Sitter space,” JHEP 10, 104 (2021) doi:10.1007/JHEP10(2021)104 [arXiv:2105.12737 [hep-th]].
  81. K. Langhoff, C. Murdia and Y. Nomura, “Multiverse in an inverted island,” Phys. Rev. D 104, no.8, 086007 (2021) doi:10.1103/PhysRevD.104.086007 [arXiv:2106.05271 [hep-th]].
  82. S. E. Aguilar-Gutierrez, A. Chatwin-Davies, T. Hertog, N. Pinzani-Fokeeva and B. Robinson, “Islands in Multiverse Models,” [arXiv:2108.01278 [hep-th]].
  83. E. Shaghoulian, “The central dogma and cosmological horizons,” JHEP 01, 132 (2022) [arXiv:2110.13210 [hep-th]].
  84. K. Goswami, K. Narayan and H. K. Saini, “Cosmologies, singularities and quantum extremal surfaces,” JHEP 03, 201 (2022) doi:10.1007/JHEP03(2022)201 [arXiv:2111.14906 [hep-th]].
  85. R. Bousso and E. Wildenhain, “Islands in closed and open universes,” Phys. Rev. D 105, no.8, 086012 (2022) doi:10.1103/PhysRevD.105.086012 [arXiv:2202.05278 [hep-th]].
  86. U. Moitra, S. K. Sake and S. P. Trivedi, “Aspects of Jackiw-Teitelboim gravity in Anti-de Sitter and de Sitter spacetime,” JHEP 06, 138 (2022) doi:10.1007/JHEP06(2022)138 [arXiv:2202.03130 [hep-th]].
  87. A. Svesko, E. Verheijden, E. P. Verlinde and M. R. Visser, “Quasi-local energy and microcanonical entropy in two-dimensional nearly de Sitter gravity,” JHEP 08, 075 (2022) doi:10.1007/JHEP08(2022)075 [arXiv:2203.00700 [hep-th]].
  88. D. S. Ageev and I. Y. Aref’eva, “Thermal density matrix breaks down the Page curve,” [arXiv:2206.04094 [hep-th]].
  89. K. Goswami and K. Narayan, “Small Schwarzschild de Sitter black holes, quantum extremal surfaces and islands,” JHEP 10, 031 (2022) doi:10.1007/JHEP10(2022)031 [arXiv:2207.10724 [hep-th]].
  90. A. Roy Chowdhury, A. Saha and S. Gangopadhyay, “Role of mutual information in the Page curve,” Phys. Rev. D 106, no.8, 086019 (2022) [arXiv:2207.13029 [hep-th]].
  91. M. H. Yu and X. H. Ge, “Entanglement islands in generalized two-dimensional dilaton black holes,” Phys. Rev. D 107, no.6, 066020 (2023) [arXiv:2208.01943 [hep-th]].
  92. R. Bousso and G. Penington, “Entanglement wedges for gravitating regions,” Phys. Rev. D 107, no.8, 086002 (2023) doi:10.1103/PhysRevD.107.086002 [arXiv:2208.04993 [hep-th]].
  93. P. J. Hu, D. Li and R. X. Miao, “Island on codimension-two branes in AdS/dCFT,” JHEP 11, 008 (2022) doi:10.1007/JHEP11(2022)008 [arXiv:2208.11982 [hep-th]].
  94. D. S. Ageev, I. Y. Aref’eva, A. I. Belokon, A. V. Ermakov, V. V. Pushkarev, T. A. Rusalev, “Infrared regularization and finite size dynamics of entanglement entropy in Schwarzschild black hole,” Phys. Rev. D 108, no.4, 046005 (2023) [arXiv:2209.00036 [hep-th]].
  95. C. S. Chu, R. X. Miao, “Tunneling of Bell Particles, Page Curve and Black Hole Information,” [arXiv:2209.03610 [hep-th]].
  96. G. Yadav and N. Joshi, “Cosmological and black hole islands in multi-event horizon spacetimes,” Phys. Rev. D 107, no.2, 026009 (2023) doi:10.1103/PhysRevD.107.026009 [arXiv:2210.00331 [hep-th]].
  97. L. Aalsma, S. E. Aguilar-Gutierrez and W. Sybesma, “An outsider’s perspective on information recovery in de Sitter space,” JHEP 01, 129 (2023) doi:10.1007/JHEP01(2023)129 [arXiv:2210.12176 [hep-th]].
  98. C. Y. Lu, M. H. Yu, X. H. Ge and L. J. Tian, “Page curve and phase transition in deformed Jackiw–Teitelboim gravity,” Eur. Phys. J. C 83, no.3, 215 (2023) doi:10.1140/epjc/s10052-023-11358-5 [arXiv:2210.14750 [hep-th]].
  99. D. Stepanenko and I. Volovich, “Schwarzschild black holes, Islands and Virasoro algebra,” Eur. Phys. J. Plus 138, no.8, 688 (2023) doi:10.1140/epjp/s13360-023-04342-1 [arXiv:2211.03153 [hep-th]].
  100. I. Ben-Dayan, M. Hadad and E. Wildenhain, “Islands in the fluid: islands are common in cosmology,” JHEP 03, 077 (2023) doi:10.1007/JHEP03(2023)077 [arXiv:2211.16600 [hep-th]].
  101. D. Basu, Q. Wen and S. Zhou, “Entanglement Islands from Hilbert Space Reduction,” [arXiv:2211.17004 [hep-th]].
  102. J. Kudler-Flam and Y. Kusuki, “On quantum information before the Page time,” JHEP 05, 078 (2023) doi:10.1007/JHEP05(2023)078 [arXiv:2212.06839 [hep-th]].
  103. R. Emparan, R. Luna, R. Suzuki, M. Tomašević and B. Way, “Holographic duals of evaporating black holes,” JHEP 05, 182 (2023) doi:10.1007/JHEP05(2023)182 [arXiv:2301.02587 [hep-th]].
  104. C. Z. Guo, W. C. Gan and F. W. Shu, “Page curves and entanglement islands for the step-function Vaidya model of evaporating black holes,” JHEP 05, 042 (2023) doi:10.1007/JHEP05(2023)042 [arXiv:2302.02379 [hep-th]].
  105. S. Parvizi and M. Shahbazi, “Analogue gravity and the island prescription,” Eur. Phys. J. C 83, no.8, 705 (2023) doi:10.1140/epjc/s10052-023-11874-4 [arXiv:2302.08742 [hep-th]].
  106. T. N. Hung and C. H. Nam, “Compactified extra dimension and entanglement island as clues to quantum gravity,” Eur. Phys. J. C 83, no.6, 472 (2023) doi:10.1140/epjc/s10052-023-11606-8 [arXiv:2303.00348 [hep-th]].
  107. C. H. Wu and J. Xu, “Islands in non-minimal dilaton gravity: exploring effective theories for black hole evaporation,” JHEP 10, 094 (2023) doi:10.1007/JHEP10(2023)094 [arXiv:2303.03410 [hep-th]].
  108. M. Cadoni, M. Oi and A. P. Sanna, “Evaporation and information puzzle for 2D nonsingular asymptotically flat black holes,” JHEP 06, 211 (2023) doi:10.1007/JHEP06(2023)211 [arXiv:2303.05557 [hep-th]].
  109. A. Roy Chowdhury, A. Saha and S. Gangopadhyay, “Mutual information of subsystems and the Page curve for the Schwarzschild–de Sitter black hole,” Phys. Rev. D 108, no.2, 026003 (2023) [arXiv:2303.14062 [hep-th]].
  110. D. S. Ageev, I. Y. Aref’eva, A. I. Belokon, V. V. Pushkarev and T. A. Rusalev, “Entanglement entropy in de Sitter: no pure states for conformal matter,” [arXiv:2304.12351 [hep-th]].
  111. D. Basu, J. Lin, Y. Lu and Q. Wen, “Ownerless island and partial entanglement entropy in island phases,” [arXiv:2305.04259 [hep-th]].
  112. C. W. Tong, D. H. Du and J. R. Sun, “Island of Reissner-Nordstr𝐨¨¨𝐨\mathbf{\ddot{o}}over¨ start_ARG bold_o end_ARGm anti-de Sitter black holes in the large d𝑑ditalic_d limit,” [arXiv:2306.06682 [hep-th]].
  113. M. H. Yu, X. H. Ge and C. Y. Lu, “Page Curves for Accelerating Black Holes,” [arXiv:2306.11407 [hep-th]].
  114. C. J. Chou, H. B. Lao and Y. Yang, “Page Curve of AdS-Vaidya Model for Evaporating Black Holes,” [arXiv:2306.16744 [hep-th]].
  115. S. E. Aguilar-Gutierrez, R. Espíndola and E. K. Morvan-Benhaim, “A teleportation protocol in Schwarzschild-de Sitter space,” [arXiv:2308.13516 [hep-th]].
  116. B. Czech, S. Shuai and H. Tang, “Information recovery in the Hayden-Preskill protocol,” [arXiv:2310.16988 [hep-th]].
  117. V. Franken, H. Partouche, F. Rondeau and N. Toumbas, “Closed FRW holography: A time-dependent ER=EPR realization,” [arXiv:2310.20652 [hep-th]].
  118. K. Narayan, “Extremal surfaces in de Sitter spacetime,” Phys. Rev. D 91, no.12, 126011 (2015) doi:10.1103/PhysRevD.91.126011 [arXiv:1501.03019 [hep-th]].
  119. Y. Sato, “Comments on Entanglement Entropy in the dS/CFT Correspondence,” Phys. Rev. D 91, no.8, 086009 (2015) doi:10.1103/PhysRevD.91.086009 [arXiv:1501.04903 [hep-th]].
  120. K. Narayan, “On extremal surfaces and de Sitter entropy,” Phys. Lett. B 779, 214-222 (2018) doi:10.1016/j.physletb.2018.02.010 [arXiv:1711.01107 [hep-th]].
  121. K. Doi, J. Harper, A. Mollabashi, T. Takayanagi and Y. Taki, “Pseudoentropy in dS/CFT and Timelike Entanglement Entropy,” Phys. Rev. Lett. 130, no.3, 031601 (2023) doi:10.1103/PhysRevLett.130.031601 [arXiv:2210.09457 [hep-th]].
  122. K. Narayan, “de Sitter space, extremal surfaces, and time entanglement,” Phys. Rev. D 107, no.12, 126004 (2023) doi:10.1103/PhysRevD.107.126004 [arXiv:2210.12963 [hep-th]].
  123. G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Particle Creation,” Phys. Rev. D 15, 2738 (1977). doi:10.1103/PhysRevD.15.2738
  124. P. H. Ginsparg and M. J. Perry, “Semiclassical Perdurance of de Sitter Space,” Nucl. Phys. B 222, 245 (1983). doi:10.1016/0550-3213(83)90636-3
  125. R. Bousso and S. W. Hawking, “Pair creation of black holes during inflation,” Phys. Rev. D 54, 6312 (1996) doi:10.1103/PhysRevD.54.6312 [gr-qc/9606052].
  126. R. Bousso and S. W. Hawking, “(Anti)evaporation of Schwarzschild-de Sitter black holes,” Phys. Rev. D 57, 2436-2442 (1998) doi:10.1103/PhysRevD.57.2436 [arXiv:hep-th/9709224 [hep-th]].
  127. H. Nariai, “On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case”, Sci. Rep. Tohoku Univ. Eighth Ser. 34, 1950.
  128. J. Maldacena, G. J. Turiaci and Z. Yang, “Two dimensional Nearly de Sitter gravity,” arXiv:1904.01911 [hep-th].
  129. K. Fernandes, K. S. Kolekar, K. Narayan and S. Roy, “Schwarzschild de Sitter and extremal surfaces,” Eur. Phys. J. C 80, no.9, 866 (2020) doi:10.1140/epjc/s10052-020-08437-2 [arXiv:1910.11788 [hep-th]].
  130. S. Shankaranarayanan, “Temperature and entropy of Schwarzschild-de Sitter space-time,” Phys. Rev. D 67, 084026 (2003) doi:10.1103/PhysRevD.67.084026 [arXiv:gr-qc/0301090 [gr-qc]].
  131. J. Guven and D. Núñez, “Schwarzschild-de Sitter space and its perturbations,” Phys. Rev. D 42, no.8, 2577-2584 (1990) doi:10.1103/physrevd.42.2577
  132. A. Strominger, “Les Houches lectures on black holes,” [arXiv:hep-th/9501071 [hep-th]].
  133. D. Grumiller, W. Kummer and D. V. Vassilevich, “Dilaton gravity in two-dimensions,” Phys. Rept. 369, 327-430 (2002) doi:10.1016/S0370-1573(02)00267-3 [arXiv:hep-th/0204253 [hep-th]].
  134. T. G. Mertens and G. J. Turiaci, “Solvable models of quantum black holes: a review on Jackiw–Teitelboim gravity,” Living Rev. Rel. 26, no.1, 4 (2023) doi:10.1007/s41114-023-00046-1 [arXiv:2210.10846 [hep-th]].
  135. K. Narayan, “On aspects of two-dimensional dilaton gravity, dimensional reduction, and holography,” Phys. Rev. D 104, no.2, 026007 (2021) doi:10.1103/PhysRevD.104.026007 [arXiv:2010.12955 [hep-th]].
  136. R. Bhattacharya, K. Narayan and P. Paul, “Cosmological singularities and 2-dimensional dilaton gravity,” JHEP 08, 062 (2020) doi:10.1007/JHEP08(2020)062 [arXiv:2006.09470 [hep-th]].
  137. P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J. Stat. Mech. 0406, P06002 (2004) doi:10.1088/1742-5468/2004/06/P06002 [arXiv:hep-th/0405152 [hep-th]].
  138. P. Calabrese and J. Cardy, “Entanglement entropy and conformal field theory,” J. Phys. A 42, 504005 (2009) doi:10.1088/1751-8113/42/50/504005 [arXiv:0905.4013 [cond-mat.stat-mech]].
  139. P. Calabrese, J. Cardy, E. Tonni, “Entanglement entropy of two disjoint intervals in conformal field theory,” J. Stat. Mech. 0911, P11001 (2009)​ doi:10.1088/1742-5468/2009/11/P11001​ [arXiv:0905.2069 [hep-th]].
  140. P. Calabrese, J. Cardy, E. Tonni, “Entanglement entropy of two disjoint intervals in conformal field theory II,” J. Stat. Mech. 1101, P01021 (2011)​ doi:10.1088/1742-5468/2011/01/P01021​ [arXiv:1011.5482 [hep-th]].
  141. M. Headrick, “Entanglement Renyi entropies in holographic theories,” Phys. Rev. D 82, 126010 (2010) [arXiv:1006.0047 [hep-th]].
  142. J. F. Pedraza, A. Svesko, W. Sybesma and M. R. Visser, “Semi-classical thermodynamics of quantum extremal surfaces in Jackiw-Teitelboim gravity,” JHEP 12, 134 (2021) doi:10.1007/JHEP12(2021)134 [arXiv:2107.10358 [hep-th]].
  143. J. F. Pedraza, A. Svesko, W. Sybesma and M. R. Visser, “Microcanonical action and the entropy of Hawking radiation,” Phys. Rev. D 105, no.12, 126010 (2022) doi:10.1103/PhysRevD.105.126010 [arXiv:2111.06912 [hep-th]].
  144. E. K. Morvan, J. P. van der Schaar and M. R. Visser, “On the Euclidean action of de Sitter black holes and constrained instantons,” SciPost Phys. 14, no.2, 022 (2023) doi:10.21468/SciPostPhys.14.2.022 [arXiv:2203.06155 [hep-th]].
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube