Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Energy and system size dependence of strongly intensive fluctuation measures in heavy-ion collisions at FAIR energies (2312.05493v1)

Published 9 Dec 2023 in hep-ph and nucl-th

Abstract: Event-by-event fluctuations of multiplicity and transverse momentum of charged hadrons produced in heavy-ion collisions at FAIR energies, 10A, 20A, 30A and 40A GeV are studied in the framework of relativistic transport model, URQMD. Dependence of two families of strongly intensive measures of multiplicity($N$) and transverse momentum($p_{\rm T}$) fluctuations, $\Delta[p_{\rm T},N]$ and $\Sigma[p_{\rm T},N]$, on collision centrality, centrality bin-widths and pseudorapidity windows are examined. Attempts are also made to study $NN$, $N$$p_{\rm T}$ and $p_{\rm T}$$p_{\rm T}$ fluctuations using two window analysis method. The findings suggest that the measure, $\Delta[p_{\rm T},N]$ be dealt with proper selection of centrality intervals. This measure also exhibits a strong dependence on the widths of $\eta$ windows. The variable $\Sigma[p_{\rm T},N]$, however, is observed to be insensitive to the centrality bin-widths and shows a variation of $< 5\%$ with the widths of $\eta$ windows. The analysis of data after event mixing gives $\Delta[p_{\rm T},N]$ and $\Sigma[p_{\rm T},N]$ values as $\sim 1$ irrespective of the widths of $\eta$ windows and collision centrality, as predicted by model of independent particle emission, IPM. The study of joint fluctuations of the two quantities on two $\eta$ windows separated in $\eta$ space, reveals that $\Sigma[N_{\rm F},N_{\rm B}]$ values are $\sim 1$ irrespective of the position of $\eta$ windows whereas, the values of $\Sigma[N_{\rm F},p_{\rm T_B}]$ and $\Sigma[p_{\rm T_F},p_{\rm T_B}]$ firstly increase with $\eta_{sep}$ and later acquire saturations. The observed trend of centrality dependence of $\Sigma[N_{\rm F},N_{\rm B}], \Sigma[N_{\rm F},p_{\rm T_B}]$ and $\Sigma[p_{\rm T_F},p_{\rm T_B}]$ agrees fairly well with those observed in MC simulated studies carried out for AA collisions at LHC energies in the framework model of string fusion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. A. Motornenko et al, J. Phys. G45 (2018) 115104.
  2. M. I. Gorenstein and M. Gaz´´z\acute{\rm z}over´ start_ARG roman_z end_ARGdzicki, Phys. Rev. C84 (2011) 014904.
  3. M. Rybczynski and Z. Wlodarczyk, Eur. Phys. J. Web Conf. 235 (2020) 01005.
  4. R. V. Poberezhnyuk et al, Acta Phys. Polon. B47 (2016) 2055.
  5. Maja Mac´´c\acute{\rm c}over´ start_ARG roman_c end_ARGkowiak-Pawłowska and A. Wilczek, J. Phys.: Conf. Series 509 (2014) 012044.
  6. D. S. Prokhorova and V. N. Kovalenko, Phys. Part. and Nuclei 51 (2020) 323.
  7. M. Mukherjee, Eur. Phys. J Web Conf. 112 (2016) 04004.
  8. M. Gaz´´z\acute{\rm z}over´ start_ARG roman_z end_ARGdzicki et al, J. Phys. G30 (2004) S701.
  9. P. Mali et al, J. Phys. G46 (2019) 125107.
  10. S. Ghosh et al, Phys. Rev. C96 (2017) 024912.
  11. Z. Fodor et al, Phys. Lett. B568 (2003) 73.
  12. K. Werner et al, Phys. Rev. C74 (2006) 044902.
  13. K. Werner et al, Phys. Rev. C82 (2010) 044904.
  14. W. Cassing et al, Phys. Rev. C78 (2008) 034929.
  15. W. Cassing et al, Nucl. Phys. A831 (2009) 215.
  16. Zi-wei Lin et al, Phys. Rev. C84 (2001) 011902.
  17. A. Chandra et al, Adv. High En. Phys. 2019 (2019) 3905376.
  18. V. K. Singh et al, Phys. Rev. C101 (2020) 014903.
  19. M. Bleicher et al, Phys. Rev. C62 (2000) 061902.
  20. L. V. Bravina et al, Phys. Lett. B434 (1998) 379.
  21. S. A. Bass et al, Phys. Rev. Lett. 81 (1998) 4092.
  22. S. Soff et al, Phys. Lett B471 (1999) 89.
  23. C. Spieles et al, Eur. Phys. J. C5 (1998) 349.
  24. M. Bliecher et al, Phys. Lett. B435 (1998) 435.
  25. J. Xu et al, Phys. Rev. C94 (2016) 024901.
  26. C. Zhou et al, Phys. Rev. C96 (2017) 014909.
  27. R. K. Netrakanti et al, Nucl. Phys. A947 (2016) 248.
  28. G. D. Waterfall et al, Phys. Rev. C92 (2015) 024902.
  29. S. He and X. Luo, Phys. Lett. B774 (2017) 623.
  30. V. P. Konchakovski et al, Phys. Rev. C78 (2008) 024906.
  31. M. I. Gorenstein and M. Rybczynski, Phys. Lett. B730 (2014) 70.
  32. M. Gaz´´z\acute{\rm z}over´ start_ARG roman_z end_ARGdzicki and S. Mrowezynski, Z. Phys. C54 (1992) 127.
  33. M. I. Gorenstein and K. Grebieszkow, Phys. Rev. C89 (2014) 034903. arXiv:1309.7878v2.
  34. M. Gaz´´z\acute{\rm z}over´ start_ARG roman_z end_ARGdzicki et al, Phys. Rev. C88 (2013) 024907.
  35. E. Andronov and V. N. Kovalenko Thoer. and Math. Phys. 2000 (2019) 1282.
  36. G. Feofilov et al, Euro. Phys. J. Web Conf. 171 (2018) 18003.
  37. V. Vechernin, Euro. Phys. J. Web Conf. 191 (2018) 04011.
  38. A. Aduzkiewicz et al, Eur. Phys. J76 (2016) 635.
  39. K. Grebieszkow, arXiv:1904.03165v1.
  40. T. Anticic et al, Phys. Rev. C92 (2015) 044905.
  41. V. V. Begun et al, J. Phys. G: Nucl. Part. Phys. 42 (2015) 075101. arXiv 1409.3023v2.
  42. Xiaochao Wu et al, J. Phys. G48 (2021) 105101.
  43. B. Anderson et al, Phys. Rep. 97 (1983) 31.
  44. S. Basu et al, Phys.Rev. C104 (2021) 064902. arXiv:2001.07167v2.
  45. S. Basu et al, Phys. Rev. C93 (2016) 064902.
  46. V. Kovalenko, Euro. Phys. J. Web Conf. 204 (2019) 03006. arXiv: 1811.08819v2.
  47. S. Kundu et al, arXiv:1912.05176v1.
  48. A. Capella et al, Phys. Rep. 236 (1994) 225.
  49. M. Brown et al, Euro Phys J. C32 (2004) 535.
  50. N. Amelin et al, Phys. Rev. Lett. 73 (1994) 2813.
  51. E. Andronov and V. Vechernin, Euro. Phys. J. A55 (2019) 14.
  52. S. Ahmad et al, Phys. Scr. 87 (2013) 045201.
  53. L. J. Shi and S. Jeon, Phys. Rev. C72 (2005) 034904.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com