Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anti-symmetric and Positivity Preserving Formulation of a Spectral Method for Vlasov-Poisson Equations (2312.05439v3)

Published 9 Dec 2023 in math.NA, cs.NA, math-ph, and math.MP

Abstract: We analyze the anti-symmetric properties of a spectral discretization for the one-dimensional Vlasov-Poisson equations. The discretization is based on a spectral expansion in velocity with the symmetrically weighted Hermite basis functions, central finite differencing in space, and an implicit Runge Kutta integrator in time. The proposed discretization preserves the anti-symmetric structure of the advection operator in the Vlasov equation, resulting in a stable numerical method. We apply such discretization to two formulations: the canonical Vlasov-Poisson equations and their continuously transformed square-root representation. The latter preserves the positivity of the particle distribution function. We derive analytically the conservation properties of both formulations, including particle number, momentum, and energy, which are verified numerically on the following benchmark problems: manufactured solution, linear and nonlinear Landau damping, two-stream instability, bump-on-tail instability, and ion-acoustic wave.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Applied mathematics series. Dover Publications, 1965.
  2. A. Arakawa. Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. Journal of Computational Physics, 1(1):119–143, 1966.
  3. A Technique for Accelerating the Convergence of Restarted GMRES. SIAM Journal on Matrix Analysis and Applications, 26(4):962–984, 2005.
  4. M. Bessemoulin-Chatard and F. Filbet. On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system. Journal of Computational Physics, 451:110881, Feb 2022.
  5. P. Bogacki and L. Shampine. A 3(2) pair of Runge-Kutta formulas. Applied Mathematics Letters, 2(4):321–325, 1989.
  6. On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods. Computer Physics Communications, 198:47–58, 2016.
  7. J. Canosa. Numerical solution of Landau’s dispersion equation. Journal of Computational Physics, 13(1):158–160, 1973.
  8. M. Carrié and B. Shadwick. An unconditionally stable, time-implicit algorithm for solving the one-dimensional Vlasov-Poisson system. Journal of Plasma Physics, 88(2):905880201, 2022.
  9. Energy-conserving discontinuous Galerkin methods for the Vlasov-Ampére system. Journal of Computational Physics, 256:630–655, 2014.
  10. G. Delzanno. Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form. Journal of Computational Physics, 301:338–356, 2015.
  11. R. E. Denton and M. Kotschenreuther. δ⁢f𝛿𝑓\delta fitalic_δ italic_f Algorithm. Journal of Computational Physics, 119(2):283–294, 1995.
  12. J. Dongarra and A. Geist. Report on the Oak Ridge National Laboratory’s Frontier System. Technical Report ICL-UT-22-05, Oak Ridge National Laboratory, 2022-05 2022.
  13. F. Filbet. Convergence of a Finite Volume Scheme for the Vlasov–Poisson System. SIAM Journal on Numerical Analysis, 39(4):1146–1169, 2001.
  14. F. Filbet and T. Xiong. Conservative Discontinuous Galerkin/Hermite Spectral Method for the Vlasov-Poisson System. Communications on Applied Mathematics and Computation, 4:1–26, 09 2020.
  15. S. Gary. Theory of Space Plasma Microinstabilities. Cambridge Atmospheric and Space Science Series. Cambridge University Press, 1993.
  16. D. Gottlieb and S. Orszag. Numerical Analysis of Spectral Methods: Theory and Applications. Society for Industrial and Applied Mathematics, 1977.
  17. H. Grad. On the kinetic theory of rarefied gases. Communications on Pure and Applied Mathematics, 2(4):331–407, 1949.
  18. Geometric numerical integration, volume 31 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.
  19. F. D. Halpern. Anti-symmetric representation of the extended magnetohydrodynamic equations. Physics of Plasmas, 27(4):042303, 04 2020.
  20. Simulations of plasmas and fluids using anti-symmetric models. Journal of Computational Physics, 445:110631, 2021.
  21. Anti-symmetric plasma moment equations with conservative discrete counterparts. Physics of Plasmas, 25(6), 06 2018.
  22. A discontinuous Galerkin method for the Vlasov-Poisson system. Journal of Computational Physics, 231(4):1140–1174, 2012.
  23. J. Holloway. On Numerical Methods for Hamiltonian PDEs and a Collocation Method for the Vlasov-Maxwell Equations. Journal of Computational Physics, 129(1):121–133, 1996.
  24. J. Holloway. Spectral velocity discretizations for the Vlasov-Maxwell equations. Transport Theory and Statistical Physics, 25:1–32, 01 1996.
  25. A. Klimas and W. Farrell. A Splitting Algorithm for Vlasov Simulation with Filamentation Filtration. Journal of Computational Physics, 110(1):150–163, 1994.
  26. D. Knoll and D. Keyes. Jacobian-free Newton-Krylov methods: a survey of approaches and applications. Journal of Computational Physics, 193(2):357–397, 2004.
  27. K. Kormann and A. Yurova. A generalized Fourier-Hermite method for the Vlasov-Poisson system. BIT Numerical Mathematics, 61, 04 2021.
  28. The multi-dimensional Hermite-discontinuous Galerkin method for the Vlasov-Maxwell equations. Computer Physics Communications, 264:107866, 2021.
  29. GEMPIC: geometric electromagnetic particle-in-cell methods. Journal of Plasma Physics, 83(4), July 2017.
  30. Variational integrators for reduced magnetohydrodynamics. Journal of Computational Physics, 321:435–458, 2016.
  31. L. D. Landau. On the vibrations of the electronic plasma. Journal of Physics, 10(1):25–34, 1946.
  32. A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system. Journal of Computational Physics, 317:82–107, July 2016.
  33. Convergence of Spectral Discretizations of the Vlasov–Poisson System. SIAM Journal on Numerical Analysis, 55(5):2312–2335, Jan 2017.
  34. P. Morrison. Hamiltonian field description of the one-dimensional Poisson-Vlasov equations. Princeton Plasma Physics Laboratory, Technical Report PPPL-1788, 07 1981.
  35. P. J. Morrison. Hamiltonian description of the ideal fluid. Rev. Mod. Phys., 70:467–521, Apr 1998.
  36. A 4th-Order Particle-in-Cell Method with Phase-Space Remapping for the Vlasov–Poisson Equation. SIAM Journal on Scientific Computing, 39(3):B467–B485, 2017.
  37. Physics-based adaptivity of a spectral method for the Vlasov-Poisson equations based on the asymmetrically-weighted Hermite expansion in velocity space. Journal of Computational Physics, 488:112252, Sep 2023.
  38. Energy-conserving explicit and implicit time integration methods for the multi-dimensional Hermite-DG discretization of the Vlasov-Maxwell equations. Computer Physics Communications, 284:108604, 2023.
  39. Vlasov methods in space physics and astrophysics. Living Reviews in Computational Astrophysics, 4, 08 2018.
  40. Fourier-Hermite spectral representation for the Vlasov-Poisson system in the weakly collisional limit. Journal of Plasma Physics, 81(2):305810203, 2015.
  41. Collisional effects on the numerical recurrence in Vlasov-Poisson simulations. Physics of Plasmas, 23, 01 2016.
  42. M. Renardy and R. Rogers. An Introduction to Partial Differential Equations. Texts in Applied Mathematics. Springer New York, 2004.
  43. P. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2):357–372, 1981.
  44. V. Roytershteyn and G. L. Delzanno. Spectral Approach to Plasma Kinetic Simulations Based on Hermite Decomposition in the Velocity Space. Frontiers in Astronomy and Space Sciences, 5, 2018.
  45. Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869, 1986.
  46. Vlasov Simulations Using Velocity-Scaled Hermite Representations. Journal of Computational Physics, 144(2):626–661, 1998.
  47. C. Scovel and A. Weinstein. Finite dimensional Lie-Poisson approximations to Vlasov-Poisson equations. Communications on Pure and Applied Mathematics, 47(5):683–709, 1994.
  48. Quadratic conservative scheme for relativistic Vlasov-Maxwell system. Journal of Computational Physics, 379:32–50, 2019.
  49. M. Shoucri and G. Knorr. Numerical integration of the Vlasov equation. Journal of Computational Physics, 14(1):84–92, 1974.
  50. T. Tang. The Hermite Spectral Method for Gaussian-Type Functions. SIAM Journal on Scientific Computing, 14(3):594–606, 1993.
  51. Spectral Solver for Multi-Scale Plasma Physics Simulations with Dynamically Adaptive Number of Moments. Procedia Computer Science, 51:1148–1157, 12 2015.
  52. SpectralPlasmaSolver: a Spectral Code for Multiscale Simulations of Collisionless, Magnetized Plasmas. Journal of Physics: Conference Series, 719:012022, 05 2016.
  53. J. P. Verboncoeur. Particle simulation of plasmas: review and advances. Plasma Physics and Controlled Fusion, 47(5A):A231, Apr 2005.
  54. Conservative fourth-order finite-volume Vlasov-Poisson solver for axisymmetric plasmas in cylindrical (r,vr,vθ)𝑟subscript𝑣𝑟subscript𝑣𝜃(r,v_{r},v_{\theta})( italic_r , italic_v start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT ) phase space coordinates. Journal of Computational Physics, 373:877–899, 2018.
  55. A Particle-in-cell Method with Adaptive Phase-space Remapping for Kinetic Plasmas. SIAM Journal on Scientific Computing, 33(6):3509–3537, 2011.
  56. Structure-preserving geometric particle-in-cell methods for Vlasov-Maxwell systems. Plasma Science and Technology, 20(11):110501, Sep 2018.
  57. A finite element code for the simulation of one-dimensional Vlasov plasmas. II. Applications. Journal of Computational Physics, 79(1):200–208, 1988.
  58. A finite element code for the simulation of one-dimensional Vlasov plasmas. I. Theory. Journal of Computational Physics, 79(1):184–199, 1988.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets