Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conservative discontinuous Galerkin/Hermite Spectral Method for the Vlasov-Poisson System (2004.02685v1)

Published 6 Apr 2020 in math.NA and cs.NA

Abstract: We propose a class of conservative discontinuous Galerkin methods for the Vlasov-Poisson system written as a hyperbolic system using Hermite polynomials in the velocity variable. These schemes are designed to be systematically as accurate as one wants with provable conservation of mass and possibly total energy. Such properties in general are hard to achieve within other numerical method frameworks for simulating the Vlasov-Poisson system. The proposed scheme employs discontinuous Galerkin discretization for both the Vlasov and the Poisson equations, resulting in a consistent description of the distribution function and electric field. Numerical simulations are performed to verify the order of accuracy and conservation properties.

Citations (25)

Summary

We haven't generated a summary for this paper yet.