Laboratory realization of relativistic pair-plasma beams (2312.05244v1)
Abstract: Relativistic electron-positron plasmas are ubiquitous in extreme astrophysical environments such as black holes and neutron star magnetospheres, where accretion-powered jets and pulsar winds are expected to be enriched with such pair plasmas. Their behaviour is quite different from typical electron-ion plasmas due to the matter-antimatter symmetry of the charged components and their role in the dynamics of such compact objects is believed to be fundamental. So far, our experimental inability to produce large yields of positrons in quasi-neutral beams has restricted the understanding of electron-positron pair plasmas to simple numerical and analytical studies which are rather limited. We present first experimental results confirming the generation of high-density, quasi-neutral, relativistic electron-positron pair beams using the 440 GeV/c beam at CERN's Super Proton Synchrotron (SPS) accelerator. The produced pair beams have a volume that fills multiple Debye spheres and are thus able to sustain collective plasma oscillations. Our work opens up the possibility of directly probing the microphysics of pair plasmas beyond quasi-linear evolution into regimes that are challenging to simulate or measure via astronomical observations.
- Arons, J. Some problems of pulsar physics or I’m madly in love with electricity. Space Science Reviews 24, 437–510 (1979). [3] Breit, G. & Wheeler, J. A. Collision of Two Light Quanta. Physical Review 46, 1087 (1934). [4] Schwinger, J. On Gauge Invariance and Vacuum Polarization. Physical Review 82, 664 (1951). [5] Erber, T. High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields. Reviews of Modern Physics 38, 626 (1966). [6] Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Breit, G. & Wheeler, J. A. Collision of Two Light Quanta. Physical Review 46, 1087 (1934). [4] Schwinger, J. On Gauge Invariance and Vacuum Polarization. Physical Review 82, 664 (1951). [5] Erber, T. High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields. Reviews of Modern Physics 38, 626 (1966). [6] Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Schwinger, J. On Gauge Invariance and Vacuum Polarization. Physical Review 82, 664 (1951). [5] Erber, T. High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields. Reviews of Modern Physics 38, 626 (1966). [6] Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Erber, T. High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields. Reviews of Modern Physics 38, 626 (1966). [6] Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Collision of Two Light Quanta. Physical Review 46, 1087 (1934). [4] Schwinger, J. On Gauge Invariance and Vacuum Polarization. Physical Review 82, 664 (1951). [5] Erber, T. High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields. Reviews of Modern Physics 38, 626 (1966). [6] Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Schwinger, J. On Gauge Invariance and Vacuum Polarization. Physical Review 82, 664 (1951). [5] Erber, T. High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields. Reviews of Modern Physics 38, 626 (1966). [6] Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Erber, T. High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields. Reviews of Modern Physics 38, 626 (1966). [6] Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Schwinger, J. On Gauge Invariance and Vacuum Polarization. Physical Review 82, 664 (1951). [5] Erber, T. High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields. Reviews of Modern Physics 38, 626 (1966). [6] Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Erber, T. High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields. Reviews of Modern Physics 38, 626 (1966). [6] Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Erber, T. High-Energy Electromagnetic Conversion Processes in Intense Magnetic Fields. Reviews of Modern Physics 38, 626 (1966). [6] Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Tsytovich, V. & Wharton, C. B. Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Laboratory electron-positron plasma – a new research object. Comments on Plasma Physics and Controlled Fusion 4, 91–100 (1978). [7] Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Arons, J. Pair creation above pulsar polar caps: Geometrical structure and energetics of slot gaps. The Astrophysical Journal 266, 215–241 (1983). [8] Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255 (1984). [9] Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blandford, R. D. & Levinson, A. Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Pair cascades in extragalactic jets. I: Gamma rays. The Astrophysical Journal 441, 79–95 (1995). [10] Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Turolla, R., Zane, S. & Watts, A. L. Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Magnetars: the physics behind observations. A review. Reports on Progress in Physics 78, 116901 (2015). [11] Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Lyubarsky, Y. Emission Mechanisms of Fast Radio Bursts. Universe 7, 56 (2021). [12] Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Hugenschmidt, C., Piochacz, C., Reiner, M. & Schreckenbach, K. The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- The NEPOMUC upgrade and advanced positron beam experiments. New Journal of Physics 14, 055027 (2012). [13] Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Bernardini, C. AdA: The first electron-positron collider. Physics in Perspective 6, 156–183 (2004). [14] Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Blumer, P. et al. Positron accumulation in the GBAR experiment. Nuclear Instruments and Methods in Physics Research Section A 1040, 167263 (2022). [15] Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Chen, H. et al. Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters 114, 215001 (2015). [16] Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Liang, E. et al. High e+/e– Ratio Dense Pair Creation with 102121{}^{21}start_FLOATSUPERSCRIPT 21 end_FLOATSUPERSCRIPT W cm−22{}^{-2}start_FLOATSUPERSCRIPT - 2 end_FLOATSUPERSCRIPT Laser Irradiating Solid Targets. Scientific Reports 5, 13968 (2015). [17] Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Sarri, G. et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications 6, 6747 (2015). [18] Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Xu, T. et al. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons. Physics of Plasmas 23, 033109 (2016). [19] Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Peebles, J. L. et al. Magnetically collimated relativistic charge-neutral electron–positron beams from high-power lasers. Physics of Plasmas 28, 074501 (2021). [20] Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Jiang, S. et al. Enhancing positron production using front surface target structures. Applied Physics Letters 118, 094101 (2021). [21] Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. & Fiuza, F. Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Perspectives on relativistic electron–positron pair plasma experiments of astrophysical relevance using high-power lasers. Physics of Plasmas 30, 020601 (2023). [22] Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bethe, H. & Heitler, W. On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- On the Stopping of Fast Particles and on the Creation of Positive Electrons. Proceedings of the Royal Society of London. Series A 146, 83–112 (1934). [23] Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Yakimenko, V. et al. FACET-II facility for advanced accelerator experimental tests. Physical Review Accelerators and Beams 22, 101301 (2019). [24] Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Bell, A. R. & Kirk, J. G. Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Possibility of Prolific Pair Production with High-Power Lasers. Physical Review Letters 101, 200403 (2008). [25] Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Ridgers, C. P. et al. Dense Electron-Positron Plasmas and Ultraintense γ𝛾\gammaitalic_γ rays from Laser-Irradiated Solids. Physical Review Letters 108, 165006 (2012). [26] Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Zhang, P., Bulanov, S. S., Seipt, D., Arefiev, A. V. & Thomas, A. G. R. Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Relativistic plasma physics in supercritical fields. Physics of Plasmas 27, 050601 (2020). [27] Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Greaves, R. G. & Surko, C. M. An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- An Electron-Positron Beam-Plasma Experiment. Physical Review Letters 75, 3846 (1995). [28] Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Danielson, J. R., Dubin, D. H. E., Greaves, R. G. & Surko, C. M. Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Plasma and trap-based techniques for science with positrons. Reviews of Modern Physics 87, 247 (2015). [29] Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Stenson, E. V. et al. Lossless Positron Injection into a Magnetic Dipole Trap. Physical Review Letters 121, 235005 (2018). [30] Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Chen, H. et al. Magnetic collimation of relativistic positrons and electrons from high intensity laser–matter interactions. Physics of Plasmas 21, 040703 (2014). [31] von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- von der Linden, J. et al. Confinement of relativistic electrons in a magnetic mirror en-route to a magnetized relativistic pair plasma. Physics of Plasmas 28, 092508 (2021). [32] Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Stoneking, M. R. et al. A new frontier in laboratory physics: magnetized electron–positron plasmas. Journal of Plasma Physics 86, 155860601 (2020). [33] Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Efthymiopoulos, I. et al. HiRadMat: A New Irradiation Facility for Material Testing at CERN, Technical Report CERN-ATS-2011-232, CERN (2011). [34] Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Ahdida, C. et al. New Capabilities of the FLUKA Multi-Purpose Code. Frontiers in Physics 9, 788253 (2022). [35] Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Battistoni, G. et al. Overview of the FLUKA code. Annals of Nuclear Energy 82, 10–18 (2015). [36] Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Vlachoudis, V. et al. FLAIR: A Powerful but User Friendly Graphical Interface for FLUKA. Proc. Int. Conf. on Mathematics, Computational Methods & Reactor Physics (M&C 2009), Saratoga Springs, New York (2009). [37] Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Arrowsmith, C. D. et al. Generating ultradense pair beams using 400 GeV/c protons. Physical Review Research 3, 023103 (2021). [38] McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- McCarthy, K. J. et al. Characterization of the response of chromium-doped alumina screens in the vacuum ultraviolet using synchrotron radiation. Journal of Applied Physics 92, 6541–6545 (2002). [39] Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Burger, S., Biskup, B., Mazzoni, S., Turner, M. et al. Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Scintillation and OTR Screen characterization with a 440 GeV/c Proton Beam in air at the CERN HiRadMat Facility. Proceedings of IBIC 2016 (2016). [40] Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Gorgisyan, I. et al. Commissioning of beam instrumentation at the CERN AWAKE facility after integration of the electron beam line. Journal of Physics: Conference Series 1067, 072015 (2018). [41] Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Lifshitz, E. M. & Pitaevskii, L. P. Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Physical Kinetics (Course of Theoretical Physics: Vol. 10) (Pergamon, Oxford, 1981). [42] Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Silin, V. P. On the electromagnetic properties of a relativistic plasma. Sov. Phys. JETP 11, 1136–1140 (1960). [43] Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Braaten, E. & Segel, D. Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Neutrino energy loss from the plasma process at all temperatures and densities. Physical Review D 48, 1478 (1993). [44] Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Ansys® Academic Research Mechanical, Release 18.1, Help System, Coupled Field Analysis Guide, ANSYS, Inc. [45] Opera 3D, Dassault Systèmes®. Opera 3D, Dassault Systèmes®.
- Opera 3D, Dassault Systèmes®.
Collections
Sign up for free to add this paper to one or more collections.