Emergent Time and Time Travel in Quantum Physics (2312.05202v2)
Abstract: Entertaining the possibility of time travel will invariably challenge dearly held concepts of fundamental physics. It becomes relatively easy to construct multiple logical contradictions using differing starting points from various well-established fields of physics. Sometimes, the interpretation is that only a full theory of quantum gravity will be able to settle these logical contradictions. Even then, it remains unclear if the multitude of problems could be overcome. Yet as definitive as this seems to the notion of time travel in physics, such a recourse to quantum gravity comes with its own, long-standing challenge to most of these counter-arguments to time travel: These arguments rely on time, while quantum gravity is (in)famously stuck with and dealing with the problem of time. One attempt to answer this problem within the canonical framework resulted in the Page-Wootters formalism, and its recent gauge-theoretic re-interpretation - as an emergent notion of time. Herein, we will begin a programme to study toy models implementing the Hamiltonian constraint in quantum theory, with an aim towards understanding what an emergent notion of time can tell us about the (im)possibility of time travel.
- Roman, T.A. Inflating Lorentzian wormholes. Physical Review D 1993, 47, 1370–1379, [arXiv:gr-qc/9211012 [gr-qc]]. https://doi.org/10.1103/PhysRevD.47.1370.
- Krasnikov, S. No time machines in classical general relativity. Classical and Quantum Gravity 2002, 19, 4109–4129, [arXiv:gr-qc/0111054 [gr-qc]]. Erratum in Classical and Quantum Gravity 2014 31(7), 079503. https://doi.org/10.1088/0264-9381/31/7/079503, https://doi.org/10.1088/0264-9381/19/15/316.
- Visser, M. The reliability horizon for semi-classical quantum gravity: Metric fluctuations are often more important than back-reaction. Physics Letters B 1997, 415, 8–14, [arXiv:gr-qc/9702041 [gr-qc]]. https://doi.org/10.1016/S0370-2693(97)01226-4.
- Hawking, S.W. Chronology protection conjecture. Physical Review D 1992, 46, 603–611. https://doi.org/10.1103/PhysRevD.46.603.
- Klinkhammer, G. Vacuum polarization of scalar and spinor fields near closed null geodesics. Physical Review D 1992, 46, 3388–3394. https://doi.org/10.1103/PhysRevD.46.3388.
- Visser, M. From wormhole to time machine: Remarks on Hawking’s chronology protection conjecture. Physical Review D 1993, 47, 554–565, [arXiv:hep-th/9202090 [hep-th]]. https://doi.org/10.1103/PhysRevD.47.554.
- Quantum backreaction on chronology horizons. Journal of High Energy Physics 2022, 02, 182, [arXiv:2109.03611 [hep-th]]. https://doi.org/10.1007/JHEP02(2022)182.
- Observables in classical canonical gravity: folklore demystified. Journal of Physics: Conference Series 2010, 222, 012018, [arXiv:1001.2726 [gr-qc]]. https://doi.org/10.1088/1742-6596/222/1/012018.
- Anderson, E. The Problem of Time; Vol. 190, Fundamental Theories of Physics, Springer, 2017. https://doi.org/10.1007/978-3-319-58848-3.
- Time in Quantum Cosmology. Universe 2022, 8, 36, [arXiv:2112.05788 [gr-qc]]. https://doi.org/10.3390/universe8010036.
- The uncertainty relation between energy and time in nonrelativistic quantum mechanics. Journal of Physics 1945, IX, 249–254. English translation of Л. И. Мандельштам, И. Е. Тамм “Соотношение неопределённости энергия-время внерелятивистской квантовой механике”, Изв. Дкад. Наук СССР (сер. физ.) 9, 122–128 (1945).
- Schrödinger, E. Spezielle Relativitätstheorie und Quantenmechanik. Sitzungsberichte der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse 1931, pp. 238–247.
- Pauli, W. Die allgemeinen Prinzipien der Wellenmechanik; Springer, 1990. Neu herausgegeben und mit historischen Anmerkungen versehen von Norbert Straumann, https://doi.org/10.1007/978-3-642-62187-9.
- Pauli, W. General Principles of Quantum Mechanics; Springer, 1980. English translation of Pauli (1990), https://doi.org/10.1007/978-3-642-61840-6.
- Time and the interpretation of canonical quantum gravity. Physical Review D 1989, 40, 2598–2614. https://doi.org/10.1103/PhysRevD.40.2598.
- Böhm, A. Quantum Mechanics – Foundations and Applications, third ed.; Springer, 1993.
- Rigged Hilbert Space Treatment of Continuous Spectrum. Fortschritte der Physik 2002, 50, 185–216, [quant-ph/0109154]. https://doi.org/10.1002/1521-3978(200203)50:2<185::AID-PROP185>3.0.CO;2-S.
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2008.
- Quantum Measurement; Theoretical and Mathematical Physics, Springer, 2016.
- Quantum Fields and Local Measurements. Communications in Mathematical Physics 2020, 378, 851–889, [arXiv:1810.06512 [math-ph]]. https://doi.org/10.1007/s00220-020-03800-6.
- Who Is Afraid of POV Measures? Unified Approach to Quantum Phase Observables. Annals of Physics 1995, 237, 1–11. https://doi.org/10.1006/aphy.1995.1001.
- Quantum Mechanics; Cambridge University Press, 2009.
- Time observables in quantum theory. Physics Letters A 1994, 191, 357–361. https://doi.org/10.1016/0375-9601(94)90785-4.
- Einstein, A. Zur Elektrodynamik bewegter Körper. Annalen der Physik 1905, 322, 891–921. https://doi.org/10.1002/andp.19053221004.
- DeWitt, B.S. Quantum Theory of Gravity. 1. The Canonical Theory. Physical Review 1967, 160, 1113–1148. https://doi.org/10.1103/PhysRev.160.1113.
- Evolution without evolution: Dynamics described by stationary observables. Physical Review D 1983, 27, 2885–2892. https://doi.org/10.1103/PhysRevD.27.2885.
- Wootters, W.K. “Time” replaced by quantum correlations. International Journal of Theoretical Physics 1984, 23, 701–711. https://doi.org/10.1007/BF02214098.
- Kuchař, K.V. Time and Interpretations of Quantum Gravity. International Journal of Modern Physics D 2011, 20, 3–86. Contribution to: 4th Canadian Conference on General Relativity and Relativistic Astrophysics, https://doi.org/10.1142/S0218271811019347.
- Quantum Time. Physical Review D 2015, 92, 045033, [arXiv:1504.04215 [quant-ph]]. https://doi.org/10.1103/PhysRevD.92.045033.
- Evolution without evolution, and without ambiguities. Physical Review D 2017, 95, 043510, [arXiv:1610.04773 [quant-ph]]. https://doi.org/10.1103/PhysRevD.95.043510.
- Emergence of Time from Quantum Interaction with the Environment. Physical Review Letters 2023, 131, 140202, [arXiv:2309.05159 [quant-ph]]. https://doi.org/10.1103/PhysRevLett.131.140202.
- Quantizing time: Interacting clocks and systems. Quantum 2019, 3, 160, [arXiv:1712.00081 [quant-ph]]. https://doi.org/10.22331/q-2019-07-08-160.
- The Trinity of Relational Quantum Dynamics. Physical Review D 2021, 104, 066001, [arXiv:1912.00033 [quant-ph]]. https://doi.org/10.1103/PhysRevD.104.066001.
- Equivalence of Approaches to Relational Quantum Dynamics in Relativistic Settings. Frontiers in Physics 2021, 9, 181, [arXiv:2007.00580 [gr-qc]]. https://doi.org/10.3389/fphy.2021.587083.
- Quantum reference frame transformations as symmetries and the paradox of the third particle. Quantum 2021, 5, 530, [arXiv:2011.01951 [quant-ph]]. https://doi.org/10.22331/q-2021-08-27-530.
- Diffeomorphism-invariant observables and dynamical frames in gravity: reconciling bulk locality with general covariance 2022. [arXiv:2206.01193 [hep-th]].
- Adlam, E. Watching the Clocks: Interpreting the Page–Wootters Formalism and the Internal Quantum Reference Frame Programme. Foundations of Physics 2022, 52, 99, [arXiv:2203.06755 [physics.hist-ph]]. https://doi.org/10.1007/s10701-022-00620-7.
- Matter relative to quantum hypersurfaces 2023. [arXiv:2308.12912 [quant-ph]].
- Measurement events relative to temporal quantum reference frames 2023. [arXiv:2308.10967 [quant-ph]].
- Quantum Frame Relativity of Subsystems, Correlations and Thermodynamics 2023. [arXiv:2308.09131 [quant-ph]].
- Deutsch, D. Quantum mechanics near closed timelike lines. Physical Review A 1991, 44, 3197–3217. https://doi.org/10.1103/PhysRevD.44.3197.
- Time-travelling billiard-ball clocks: a quantum model. Physical Review A 2021, 103, 042223, [arXiv:2007.12677 [quant-ph]]. https://doi.org/10.1103/PhysRevA.103.042223.
- Noncausal Page–Wootters circuits. Physical Review Research 2022, 4, 013180, [arXiv:2105.02304 [quant-ph]]. https://doi.org/10.1103/PhysRevResearch.4.013180.
- Vilasini, V. Approaches to causality and multi-agent paradoxes in non-classical theories. PhD thesis, University of York, 2021, [arXiv:2102.02393 [quant-ph]].
- Adlam, E. Two roads to retrocausality. Synthese 2022, 200, 422, [arXiv:2201.12934 [physics.hist-ph]]. https://doi.org/10.1007/s11229-022-03919-0.
- Chronology protection implementation in analogue gravity. European Physical Journal C 2022, 82, 299, [2201.11072]. https://doi.org/10.1140/epjc/s10052-022-10275-3.
- Sabín, C. Analogue Non-Causal Null Curves and Chronology Protection in a dc-SQUID Array. Universe 2022, 8, 452, [arXiv:quant-ph/2207.14164]. https://doi.org/10.3390/universe8090452.
- Zeh, H.D. The Physical Basis of the Direction of Time, fifth ed.; The Frontiers Collection, Springer, 2007. https://doi.org/10.1007/978-3-540-68001-7.
- Truesdell, C. Tragicomedy of Classical Thermodynamics; Springer, 1971.
- The causal hierarchy of spacetimes. In Recent developments in pseudo-Riemannian geometry; Baum, H.; Alekseevsky, D., Eds.; EMS Publishing House, 2006; p. 299–358, [arXiv:gr-qc/0609119 [gr-qc]].
- Twilight for the energy conditions? International Journal of Modern Physics D 2002, 11, 1553–1560, [arXiv:gr-qc/0205066 [gr-qc]]. https://doi.org/10.1142/S0218271802002888.
- Do the laws of physics forbid the operation of time machines? Synthese 2009, 169, 91–124. https://doi.org/10.1007/s11229-008-9338-2.
- Manchak, J.B. On the Existence of “Time Machines” in General Relativity. Philosophy of Science 2009, 76, 1020–1026. https://doi.org/10.1086/605806.
- Manchak, J.B. Some “No Hole” Spacetime Properties are Unstable. Foundations of Physics 2018, 48, 1539–1545. https://doi.org/10.1007/s10701-018-0211-y.
- Manchak, J.B. General Relativity as a Collection of Collections of Models. In Hajnal Andréka and István Németi on the Unity of Science: From Computing to Relativity Theory Through Algebraic Logic; Madarász, J.; Székely, G., Eds.; Springer, 2021; Vol. 19, Outstanding Contributions to Logic, chapter 19, pp. 409–425. https://doi.org/10.1007/978-3-030-64187-0_17.
- Generic warp drives violate the null energy condition. Physical Review D 2022, 105, 064038, [arXiv:2105.03079 [gr-qc]]. https://doi.org/10.1103/PhysRevD.105.064038.
- Observing other universe through ringholes and Klein-bottle holes. Physical Review D 2011, 84, 023008, [arXiv:1102.3784 [astro-ph.CO]]. https://doi.org/10.1103/PhysRevD.84.023008.
- Everett, A.E. Warp drive and causality. Physical Review D 1996, 53, 7365. https://doi.org/10.1103/PhysRevD.53.7365.
- Gödel, K. An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations of Gravitation. Review of Modern Physics 1949, 21, 447–450. https://doi.org/10.1103/RevModPhys.21.447.
- The large scale structure of space-time; Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1974. https://doi.org/10.1017/CBO9780511524646.
- Exact Space-Times in Einstein’s General Relativity, first paperback ed.; Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2012.
- “Twisted” black holes are unphysical. Modern Physics Letters A 2017, 32, 1771001, [1610.06135]. https://doi.org/10.1142/S0217732317710018.
- Wald, R.M. General Relativity; The University of Chicago Press, 1984.
- Penrose, R. Techniques of Differential Topology in General Relativity; Society for Industrial & Applied, 1972.
- Krasnikov, S. Hyperfast Interstellar Travel in General Relativity. Physical Review D 1998, 57, 4760–4766, [arXiv:gr-qc/9511068 [gr-qc]]. https://doi.org/10.1103/PhysRevD.57.4760.
- Manchak, J.B. No no-go: A remark on time machines. Studies in History and Philosophy of Modern Physics 2011, 42, 74–76. https://doi.org/10.1016/j.shpsb.2011.01.001.
- Novikov, I.D. Time machine and selfconsistent evolution in problems with selfinteraction. Physical Review D 1992, 45, 1989–1994. https://doi.org/10.1103/PhysRevD.45.1989.
- Sklar, L. How Free are Initial Conditions? In Proceedings of the Proceedings of the Biennial Meeting of the Philosophy of Science Association Vol. 1990, Volume Two: Symposia and Invited Papers. University of Chicago Press, 1990, pp. 551–564. https://doi.org/10.1086/psaprocbienmeetp.1990.2.193097.
- Cauchy problem in spacetimes with closed timelike curves. Physical Review D 1990, 42, 1915–1930. https://doi.org/10.1103/PhysRevD.42.1915.
- Kiefer, C. Quantum Gravity, 3rd ed.; Vol. 136, International Series of Monographs on Physics, Oxford University Press, 2012.
- Billiard balls in wormhole space-times with closed timelike curves: Classical theory. Physical Review D 1991, 44, 1077–1099. https://doi.org/10.1103/PhysRevD.44.1077.
- Classical and Quantum Initial Value Problems for Models of Chronology Violation. Physical Review D 1996, 54, 3806, [arXiv:gr-qc/9603045 [gr-qc]]. https://doi.org/10.1103/PhysRevD.54.3806.
- Bachelot, A. Global properties of the wave equation on non-globally hyperbolic manifolds. Journal de Mathématique Pures et Appliquées 2002, 81, 35–65. https://doi.org/10.1016/S0021-7824(01)01229-6.
- Billiard in the space with a time machine. Physical Review D 2010, 82, 124056, [arXiv:1011.2881 [gr-qc]]. https://doi.org/10.1103/PhysRevD.82.124056.
- Quantum mechanical phase and time operator. Physics Physique Fizika 1964, 1, 49–61. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.49.
- Canonically Conjugate Pairs, Uncertainty Relations, and Phase Operators. Journal of Mathematical Physics 1970, 11, 2242–2249. https://doi.org/10.1063/1.1665388.
- Galindo, A. Phase and Number. Letters in Mathematical Physics 1984, 8, 495–500. https://doi.org/10.1007/BF00400979.
- Methods of Modern Mathematical Physics: I. Functional Analysis, revised and enlarged ed.; Academic Press, 1980.
- Kiefer, C. Non-minimally coupled scalar fields and the initial value problem in quantum gravity. Physics Letters B 1989, 225, 227–232. https://doi.org/10.1016/0370-2693(89)90810-1.
- Kiefer, C. Wave packets in quantum cosmology and the cosmological constant. Nuclear Physics B 1990, 341, 273–293. https://doi.org/10.1016/0550-3213(90)90271-E.
- Page, D.N. Minisuperspaces with conformally and minimally coupled scalar fields. Journal of Mathematical Physics 1991, 32, 3427–3438. https://doi.org/10.1063/1.529457.
- Time in Quantum Physics: From an External Parameter to an Intrinsic Observable. Foundation of Physics 2010, 40, 1368–1378, [arXiv:0909.1899 [math-ph]]. https://doi.org/10.1007/s10701-009-9400-z.
- Singularities in homogeneous world models. Physics Letters 1965, 17, 246–247. Typo in first author of published version., https://doi.org/10.1016/0031-9163(65)90510-X.
- O’Neill, B. Semi-Riemannian Geometry with Applications to Relativity; Pure and Applied Mathematics, Academic Press, 1983.
- Visser, M. Lorentzian Wormholes: From Einstein to Hawking; AIP Series in Computational and Applied Mathematical Physics, American Institute of Physics, 1996.
- Quantum cosmology as an initial value problem. Physics Letters A 1991, 154, 321–326. https://doi.org/10.1016/0375-9601(91)90026-5.
- Zee, A. Quantum Field Theory in a Nutshell, second ed.; Princeton University Press, 2010.
- Quantum coarse-grained entropy and thermodynamics. Physical Review A 2019, 99, 010101, [arXiv:1707.09722 [quant-ph]]. https://doi.org/10.1103/PhysRevA.99.010101.
- Quantum coarse-grained entropy and thermalization in closed systems. Physical Review A 2019, 99, 012103, [arXiv:1803.00665 [quant-ph]]. https://doi.org/10.1103/PhysRevA.99.012103.
- A Brief Introduction to Observational Entropy. Foundations of Physics 2021, 51, 101, [arXiv:2008.04409 [quant-ph]]. https://doi.org/10.1007/s10701-021-00498-x.
- The time traveler’s guide to the quantization of zero modes. Journal of High Energy Physics 2021, 12, 170, [arXiv:2108.07274 [quant-ph]]. https://doi.org/10.1007/JHEP12(2021)170.
- Quantum mechanics of time travel through post-selected teleportation. Physical Review D 2011, 84, 025007, [arXiv:1007.2615 [quant-ph]]. https://doi.org/10.1103/PhysRevD.84.025007.
- Smith, A.R.S. Communicating without shared reference frames. Physical Review A 2019, 99, 052315, [arXiv:1812.08053 [quant-ph]]. https://doi.org/10.1103/PhysRevA.99.052315.