Life on a closed timelike curve (2405.18640v2)
Abstract: We study the internal dynamics of a hypothetical spaceship traveling on a close timelike curve in an axially symmetric universe. We choose the curve so that the generator of evolution in proper time is the angular momentum. Using Wigner's theorem, we prove that the energy levels internal to the spaceship must undergo spontaneous discretization. The level separation turns out to be finely tuned so that, after completing a roundtrip of the curve, all systems are back to their initial state. This implies, for example, that the memories of an observer inside the spaceship are necessarily erased by the end of the journey. More in general, if there is an increase in entropy, a Poincar\'{e} cycle will eventually reverse it by the end of the loop, forcing entropy to decrease back to its initial value. We show that such decrease in entropy is in agreement with the eigenstate thermalization hypothesis. The non-existence of time-travel paradoxes follows as a rigorous corollary of our analysis.
- Carroll, Sean, From Eternity to Here: The Quest for the Ultimate Theory of Time (Datton, 2010).
- C. Rovelli, (2019), arXiv:1912.04702 [gr-qc] .
- J. B. Hartle, Am. J. Phys. 73, 101 (2005), arXiv:gr-qc/0403001 .
- H. Nikolic, Found. Phys. Lett. 19, 259 (2006), arXiv:gr-qc/0403121 .
- L. Landau and E. Lifshitz, Statistical Physics, v. 5, Third Edition (Pergamon Press, 1980).
- K. Gödel, Rev. Mod. Phys. 21, 447 (1949).
- A. K. Raychaudhuri and S. N. G. Thakurta, Phys. Rev. D 22, 802 (1980).
- D. K. Lewis, American Philosophical Quarterly 13, 145 (1976).
- I. D. Novikov, Evolution of the universe (Cambridge University Press (Cambridge), 1983).
- H. D. Politzer, Phys. Rev. D 46, 4470 (1992).
- D. Deutsch, Phys. Rev. D 44, 3197 (1991).
- S. Lloyd et al., Phys. Rev. Lett. 106, 040403 (2011), arXiv:1005.2219 [quant-ph] .
- S. Weinberg, The Quantum Theory of Fields, Vol. 1 (Cambridge University Press, 1995).
- S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1973).
- M. J. Rebouças and J. Tiomno, Phys. Rev. D 28, 1251 (1983).
- K. Huang, Statistical Mechanics, 2nd ed. (John Wiley & Sons, 1987).
- H. B. Callen, Thermodynamics and an introduction to thermostatistics; 2nd ed. (Wiley, New York, NY, 1985).
- T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics (Springer-Verlag, Berlin, 1995).
- J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
- M. Srednicki, Phys. Rev. E 50 (1994), 10.1103/PhysRevE.50.888, arXiv:cond-mat/9403051 .
- M. Srednicki, Journal of Physics A Mathematical General 32, 1163 (1999), arXiv:cond-mat/9809360 [cond-mat.stat-mech] .
- P. Bocchieri and A. Loinger, Phys. Rev. 107, 337 (1957).
- O. Penrose, Reports on Progress in Physics 42, 1937 (1979).
- N. D. Mermin, Space and Time is Special Relativity (McGraw hill, New York, 1968).
- A. Zee, Quantum Field Theory in a Nutshell, Nutshell handbook (Princeton Univ. Press, Princeton, NJ, 2003).
- S. W. Hawking, Phys. Rev. D 46, 603 (1992).
- K. S. Thorne, Black holes and time warps: Einstein’s outrageous legacy (W. W. Norton and Company, New York, 1994).
- K. Thorne, “Closed Timelike Curves": Paper presented at the 13th Int. Conf. on General Relativity and Gravitation (1992).
- J. L. Friedman and A. Higuchi, Annalen Phys. 15, 109 (2006), arXiv:0801.0735 [gr-qc] .
- M. Srednicki, Quantum field theory (Cambridge University Press, 2007).