Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric Thickness of Multigraphs is $\exists \mathbb{R}$-complete (2312.05010v2)

Published 8 Dec 2023 in cs.CG, cs.DM, and cs.DS

Abstract: We say that a (multi)graph $G = (V,E)$ has geometric thickness $t$ if there exists a straight-line drawing $\varphi : V \rightarrow \mathbb{R}2$ and a $t$-coloring of its edges where no two edges sharing a point in their relative interior have the same color. The \textsc{Geometric Thickness} problem asks whether a given multigraph has geometric thickness at most $t$. This problem was shown to be NP-hard for $t=2$ [Durocher, Gethner, and Mondal, CG 2016]. In this paper, we settle the computational complexity of \textsc{Geometric Thickness} by showing that it is $\exists \mathbb{R}$-complete already for thickness $30$. Moreover, our reduction shows that the problem is $\exists \mathbb{R}$-complete for $4392$-planar graphs, where a graph is $k$-planar if it admits a topological drawing with at most $k$ crossings per edge. In the course of our paper, we answer previous questions on geometric thickness and on other related problems, in particular that simultaneous graph embeddings of $31$ edge-disjoint graphs and pseudo-segment stretchability with chromatic number $30$ are $\exists \mathbb{R}$-complete.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (78)
  1. Mikkel Abrahamsen. Covering polygons is even harder. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science—FOCS 2021, pages 375–386. IEEE Computer Soc., 2022. doi:10.1109/FOCS52979.2021.00045.
  2. The art gallery problem is ∃ℝℝ\exists\mathbb{R}∃ blackboard_R-complete. In STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 65–73. ACM, New York, 2018. doi:10.1145/3188745.3188868.
  3. Training neural networks is ER-complete. In Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, pages 18293–18306, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/9813b270ed0288e7c0388f0fd4ec68f5-Abstract.html.
  4. Geometric embeddability of complexes is ∃ℝℝ\exists\mathbb{R}∃ blackboard_R-complete. In 39th International Symposium on Computational Geometry, volume 258 of LIPIcs, pages Art. No. 1, 19. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2023. doi:10.4230/lipics.socg.2023.1.
  5. Framework for ER-completeness of two-dimensional packing problems. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, pages 1014–1021. IEEE Computer Soc., 2020. doi:10.1109/FOCS46700.2020.00098.
  6. Universality theorems for inscribed polytopes and Delaunay triangulations. Discrete Comput. Geom., 54(2):412–431, 2015. doi:10.1007/s00454-015-9714-x.
  7. Enumerating order types for small point sets with applications. Order, 19(3):265–281, 2002. doi:10.1023/A:1021231927255.
  8. The thickness of an arbitrary complete graph. Mathematics of the USSR-Sbornik, 30(2):187, 1976. doi:10.1070/SM1976v030n02ABEH002267.
  9. Stationary equilibria in discounted stochastic games. Dynamic Games and Applications, pages 1–14, 2023. doi:10.1007/s13235-023-00495-x.
  10. Bounded-degree graphs have arbitrarily large geometric thickness. Electron. J. Comb., 13(1), 2006. doi:10.37236/1029.
  11. Every planar graph with nine vertices has a nonplanar complement. Bull. Am. Math. Soc., 68:569–571, 1962. doi:10.1090/S0002-9904-1962-10850-7.
  12. The thickness of the complete graph. Canadian J. Math., 17:850–859, 1965. doi:10.4153/CJM-1965-084-2.
  13. Training fully connected neural networks is ∃ℝℝ\exists\mathbb{R}∃ blackboard_R-complete. CoRR, abs/2204.01368, 2022. arXiv:2204.01368, doi:10.48550/arXiv.2204.01368.
  14. Computational complexity of decision problems about nash equilibria in win-lose multi-player games. In Argyrios Deligkas and Aris Filos-Ratsikas, editors, Algorithmic Game Theory, pages 40–57, Cham, 2023. Springer Nature Switzerland. doi:10.1007/978-3-031-43254-5_3.
  15. Computational complexity of multi-player evolutionarily stable strategies. In Computer science—theory and applications, volume 12730 of Lecture Notes in Comput. Sci., pages 1–17. Springer, Cham, 2021. doi:10.1007/978-3-030-79416-3_1.
  16. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society, 21(1):1–46, 1989. doi:10.1090/S0273-0979-1989-15750-9.
  17. Tobias Boege. The Gaussian conditional independence inference problem. PhD thesis, Universität Magdeburg, 2022.
  18. Franz J. Brandenburg. Straight-line drawings of 1-planar graphs. CoRR, abs/2109.01692, 2021. URL: https://arxiv.org/abs/2109.01692, arXiv:2109.01692.
  19. Romain Brenguier. Robust equilibria in mean-payoff games. In Foundations of software science and computation structures, volume 9634 of Lecture Notes in Comput. Sci., pages 217–233. Springer, Berlin, 2016. doi:10.1007/978-3-662-49630-5_13.
  20. Exotic quantifiers, complexity classes, and complete problems. Found. Comput. Math., 9(2):135–170, 2009. doi:10.1007/s10208-007-9006-9.
  21. John Canny. Some Algebraic and Geometric Computations in PSPACE. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC ’88), pages 460–467, 1988. doi:10.1145/62212.62257.
  22. Intersection graphs of rays and grounded segments. J. Graph Algorithms Appl., 22(2):273–295, 2018. doi:10.7155/jgaa.00470.
  23. The complexity of simultaneous geometric graph embedding. J. Graph Algorithms Appl., 19(1):259–272, 2015. doi:10.7155/jgaa.00356.
  24. The complexity of ergodic mean-payoff games. In Automata, languages, and programming. Part II, volume 8573 of Lecture Notes in Comput. Sci., pages 122–133. Springer, Heidelberg, 2014. doi:10.1007/978-3-662-43951-7_11.
  25. On the complexity of the escape problem for linear dynamical systems over compact semialgebraic sets. In 46th International Symposium on Mathematical Foundations of Computer Science, volume 202 of LIPIcs, pages Art. No. 33, 21. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021. doi:10.4230/LIPIcs.MFCS.2021.33.
  26. Geometric thickness of complete graphs. J. Graph Algorithms Appl., 4(3):5–17, 2000. doi:10.7155/jgaa.00023.
  27. A universality theorem for nested polytopes. CoRR, abs/1908.02213, 2019. URL: http://arxiv.org/abs/1908.02213, arXiv:1908.02213.
  28. ∀∃ℝfor-allℝ\forall\exists\mathbb{R}∀ ∃ blackboard_R-completeness and area-universality. In Graph-theoretic concepts in computer science, volume 11159 of Lecture Notes in Comput. Sci., pages 164–175. Springer, Cham, 2018. doi:10.1007/978-3-030-00256-5_14.
  29. Planar graphs have bounded queue-number. J. ACM, 67(4):22:1–22:38, 2020. doi:10.1145/3385731.
  30. Personal communication, 2022.
  31. Graph product structure for non-minor-closed classes. J. Comb. Theory, Ser. B, 162:34–67, 2023. doi:10.1016/j.jctb.2023.03.004.
  32. Track layouts of graphs. Discret. Math. Theor. Comput. Sci., 6(2):497–522, 2004. doi:10.46298/dmtcs.315.
  33. Thickness and antithickness of graphs. J. Comput. Geom., 9(1):356–386, 2018. doi:10.20382/jocg.v9i1a12.
  34. The geometric thickness of low degree graphs. In Proc. 20th ACM Symposium on Computational Geometry (SCG), pages 340–346, 2004. doi:10.1145/997817.997868.
  35. Thickness and colorability of geometric graphs. Comput. Geom., 56:1–18, 2016. doi:10.1016/j.comgeo.2016.03.003.
  36. David Eppstein. Separating thickness from geometric thickness. In Towards a theory of geometric graphs, volume 342 of Contemp. Math., pages 75–86. Amer. Math. Soc., 2004. doi:10.1090/conm/342/06132.
  37. Jeff Erickson. Optimal curve straightening is ∃ℝℝ\exists\mathbb{R}∃ blackboard_R-complete. CoRR, abs/1908.09400, 2019. URL: http://arxiv.org/abs/1908.09400, arXiv:1908.09400.
  38. Smoothing the gap between NP and ER. In Proc. 61st IEEE Symposium on Foundations of Computer Science (FOCS), pages 1022–1033. ACM, 2020. doi:10.1109/FOCS46700.2020.00099.
  39. Simultaneous geometric graph embeddings. In Graph drawing, volume 4875 of LNCS, pages 280–290. Springer, Berlin, 2008. doi:10.1007/978-3-540-77537-9_28.
  40. Recursive concurrent stochastic games. Log. Methods Comput. Sci., 4(4):4:7, 21, 2008. doi:10.2168/LMCS-4(4:7)2008.
  41. Cg:shop 2022 – minimum partition into plane subgraphs. URL: https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2022.
  42. Kristoffer Arnsfelt Hansen. The real computational complexity of minmax value and equilibrium refinements in multi-player games. Theory Comput. Syst., 63(7):1554–1571, 2019. doi:10.1007/s00224-018-9887-9.
  43. Existential theory of the reals completeness of stationary nash equilibria in perfect information stochastic games. CoRR, abs/2006.08314, 2020. URL: https://arxiv.org/abs/2006.08314, arXiv:2006.08314.
  44. Frank Harary. Research problem. Bull. Am. Math. Soc., 67:542, 1961. doi:10.1090/S0002-9904-1961-10677-0.
  45. On representations of some thickness-two graphs. Comput. Geom., 13(3):161–171, 1999.
  46. On the geometric thickness of 2-degenerate graphs. In 39th International Symposium on Computational Geometry (SoCG), volume 258 of LIPIcs, pages 44:1–44:15, 2023. doi:10.4230/LIPIcs.SoCG.2023.44.
  47. The complexity of the Hausdorff distance. In 38th International Symposium on Computational Geometry, volume 224 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 48, 17. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2022. doi:10.4230/lipics.socg.2022.48.
  48. Intersection graphs of segments. J. Combin. Theory Ser. B, 62(2):289–315, 1994. doi:10.1006/jctb.1994.1071.
  49. Monique Laurent. Matrix Completion Problems, pages 1967–1975. Springer US, Boston, MA, 2009. doi:10.1007/978-0-387-74759-0_355.
  50. On compatible triangulations with a minimum number of Steiner points. Theoret. Comput. Sci., 835:97–107, 2020. doi:10.1016/j.tcs.2020.06.014.
  51. Anthony Mansfield. Determining the thickness of graphs is NP-hard. Math. Proc. Cambridge Philos. Soc., 93(1):9–23, 1983. doi:10.1017/S030500410006028X.
  52. Jiří Matoušek. Intersection graphs of segments and ∃ℝℝ\exists\mathbb{R}∃ blackboard_R. CoRR, abs/1406.2636, 2014. URL: http://arxiv.org/abs/1406.2636, arXiv:1406.2636.
  53. The number of bits needed to represent a unit disk graph. In Graph-theoretic concepts in computer science, volume 6410 of Lecture Notes in Comput. Sci., pages 315–323. Springer, Berlin, 2010. doi:10.1007/978-3-642-16926-7_29.
  54. Is causal reasoning harder than probabilistic reasoning? CoRR, abs/2111.13936, 2021. URL: https://arxiv.org/abs/2111.13936, arXiv:2111.13936.
  55. On classifying continuous constraint satisfaction problems. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science—FOCS 2021, pages 781–791. IEEE Computer Soc., Los Alamitos, CA, 2022. doi:10.1109/FOCS52979.2021.00081.
  56. N. E. Mnëv. The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In Topology and geometry—Rohlin Seminar, volume 1346 of Lecture Notes in Math., pages 527–543. Springer, Berlin, 1988. doi:10.1007/BFb0082792.
  57. The thickness of graphs: A survey. Graphs Comb., 14(1):59–73, 1998. doi:10.1007/PL00007219.
  58. Planar Graphs: Theory and Algorithms. Elsevier, 1988. doi:10.1016/s0304-0208(08)x7180-4.
  59. OEIS. Number of simple arrangements of n𝑛nitalic_n pseudolines in the projective plane with a marked cell. Number of Euclidean pseudo-order types: nondegenerate abstract order types of configurations of n𝑛nitalic_n points in the plane, 2023. [Online; accessed on 2023-09-15]. URL: https://oeis.org/A006247.
  60. Jürgen Richter-Gebert. Realization spaces of polytopes, volume 1643 of Lecture Notes in Math. Springer-Verlag, Berlin, 1996. doi:10.1007/BFb0093761.
  61. Realization spaces of 4444-polytopes are universal. Bull. Amer. Math. Soc. (N.S.), 32(4):403–412, 1995. doi:10.1090/S0273-0979-1995-00604-X.
  62. Gerhard Ringel. Färbungsprobleme auf Flächen und Graphen, volume 2 of Mathematische Monographien [Mathematical Monographs]. VEB Deutscher Verlag der Wissenschaften, Berlin, 1959.
  63. Marcus Schaefer. Complexity of some geometric and topological problems. In Graph drawing, volume 5849 of Lecture Notes in Comput. Sci., pages 334–344. Springer, Berlin, 2010. doi:10.1007/978-3-642-11805-0_32.
  64. Marcus Schaefer. Realizability of graphs and linkages. In Thirty essays on geometric graph theory, pages 461–482. Springer, New York, 2013. doi:10.1007/978-1-4614-0110-0_24.
  65. Marcus Schaefer. Complexity of geometric k𝑘kitalic_k-planarity for fixed k𝑘kitalic_k. J. Graph Algorithms Appl., 25(1):29–41, 2021. doi:10.7155/jgaa.00548.
  66. Marcus Schaefer. On the complexity of some geometric problems with fixed parameters. J. Graph Algorithms Appl., 25(1):195–218, 2021. doi:10.7155/jgaa.00557.
  67. Fixed points, Nash equilibria, and the existential theory of the reals. Theory Comput. Syst., 60(2):172–193, 2017. doi:10.1007/s00224-015-9662-0.
  68. The complexity of tensor rank. Theory Comput. Syst., 62(5):1161–1174, 2018. doi:10.1007/s00224-017-9800-y.
  69. Beyond the existential theory of the reals. CoRR, abs/2210.00571, 2022. URL: http://arxiv.org/abs/2210.00571, arXiv:2210.00571.
  70. Yaroslav Shitov. A universality theorem for nonnegative matrix factorizations. CoRR, abs/1606.09068, June 29 2016. arXiv:1606.09068, doi:10.48550/arXiv.1606.09068.
  71. Yaroslav Shitov. The complexity of positive semidefinite matrix factorization. SIAM J. Optim., 27(3):1898–1909, 2017. doi:10.1137/16M1080616.
  72. Yaroslav Shitov. Further ∃ℝℝ\exists\mathbb{R}∃ blackboard_R-complete problems with PSD matrix factorizations. Found. Comput. Math., 23(4), 2023. doi:10.1007/s10208-023-09610-1.
  73. Peter W. Shor. Stretchability of pseudolines is NP-hard. In Applied geometry and discrete mathematics, volume 4 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 531–554. Amer. Math. Soc., Providence, RI, 1991. doi:10.1090/dimacs/004/41.
  74. Jack Stade. Complexity of the boundary-guarding art gallery problem. CoRR, abs/2210.12817, 2022. arXiv:2210.12817, doi:10.48550/arXiv.2210.12817.
  75. William T Tutte. The non-biplanar character of the complete 9-graph. Canadian Mathematical Bulletin, 6(3):319–330, 1963.
  76. William T. Tutte. The thickness of a graph. Indagationes Mathematicae (Proceedings), 66:567–577, 1963. doi:10.1016/S1385-7258(63)50055-9.
  77. Michel Las Vergnas. Order properties of lines in the plane and a conjecture of G. Ringel. J. Comb. Theory, Ser. B, 41(2):246–249, 1986. doi:10.1016/0095-8956(86)90048-1.
  78. Emil Verkama. Repairing the universality theorem for 4-polytopes. Master’s thesis, Aalto University School of Science, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com