Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reversible Entanglement Beyond Quantum Operations (2312.04456v1)

Published 7 Dec 2023 in quant-ph, cond-mat.str-el, cs.IT, hep-th, math-ph, math.IT, and math.MP

Abstract: We introduce a reversible theory of exact entanglement manipulation by establishing a necessary and sufficient condition for state transfer under trace-preserving transformations that completely preserve the positivity of partial transpose (PPT). Under these free transformations, we show that logarithmic negativity emerges as the pivotal entanglement measure for determining entangled states' transformations, analogous to the role of entropy in the second law of thermodynamics. Previous results have proven that entanglement is irreversible under quantum operations that completely preserve PPT and leave open the question of reversibility for quantum operations that do not generate entanglement asymptotically. However, we find that going beyond the complete positivity constraint imposed by standard quantum mechanics enables a reversible theory of exact entanglement manipulation, which may suggest a potential incompatibility between the reversibility of entanglement and the fundamental principles of quantum mechanics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. Entanglement Cost under Positive-Partial-Transpose-Preserving Operations. Physical Review Letters, 90(2):027901, jan 2003.
  2. Fernando G. S. L. Brandão and Gilad Gour. Reversible framework for quantum resource theories. Phys. Rev. Lett., 115:070503, Aug 2015.
  3. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70(13):1895–1899, mar 1993.
  4. On a gap in the proof of the generalised quantum Stein’s lemma and its consequences for the reversibility of quantum resources. Quantum, 7:1103, 2023.
  5. Concentrating partial entanglement by local operations. Physical Review A, 53(4):2046–2052, apr 1996.
  6. Multipartite entanglement in quantum algorithms. Physical Review A, 83(5):52313, 2011.
  7. Fernando G S L Brandão and Martin B Plenio. A Reversible Theory of Entanglement and its Relation to the Second Law. Communications in Mathematical Physics, 295(3):829–851, may 2010.
  8. Entanglement-Assisted Classical Capacity of Noisy Quantum Channels. Physical Review Letters, 83(15):3081–3084, oct 1999.
  9. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 69(20):2881–2884, nov 1992.
  10. Sadi Carnot. Réflexions sur la puissance motrice du feu, volume 26. Vrin, 1979.
  11. Entanglement Irreversibility from Quantum Discord and Quantum Deficit. Physical Review Letters, 107(2):020502, jul 2011.
  12. Entanglement manipulation beyond local operations and classical communication. Journal of Mathematical Physics, 61(4):042201, apr 2020.
  13. Entanglement of the Antisymmetric State. Communications in Mathematical Physics, 311(2):397–422, apr 2012.
  14. Squashed entanglement An additive entanglement measure. Journal of Mathematical Physics, 45(3):829–840, mar 2004.
  15. Quantum sensing. Reviews of modern physics, 89(3):35002, 2017.
  16. Artur K. Ekert. Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67(6):661–663, aug 1991.
  17. Distillability via Protocols Respecting the Positivity of Partial Transpose. Physical Review Letters, 87(25):257902, nov 2001.
  18. Towards the ultimate limits of quantum channel discrimination. arXiv preprint arXiv:2110.14842, 2021.
  19. Robin Giles. Mathematical foundations of thermodynamics: International series of monographs on pure and applied mathematics, volume 53. Elsevier, 2016.
  20. Matthew B Hastings. Superadditivity of communication capacity using entangled inputs. Nature Physics, 5(4):255–257, apr 2009.
  21. Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223(1-2):1–8, nov 1996.
  22. Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Physical Review Letters, 80(24):5239–5242, jan 1998.
  23. Asymptotic manipulations of entanglement can exhibit genuine irreversibility. Physical Review Letters, 84(19):4260, 2000.
  24. Reversible transformations from pure to mixed states and the unique measure of information. Physical Review A, 67(6):062104, jun 2003.
  25. The asymptotic entanglement cost of preparing a quantum state. Journal of Physics A: Mathematical and General, 34(35):6891–6898, sep 2001.
  26. Are the Laws of Entanglement Theory Thermodynamical? Physical Review Letters, 89(24):240403, nov 2002.
  27. Satoshi Ishizaka. Binegativity and geometry of entangled states in two qubits. Physical Review A, 69(2):020301, feb 2004.
  28. On the role of entanglement in quantum-computational speed-up. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2036):2011–2032, 2003.
  29. Useful states and entanglement distillation. IEEE Transactions on Information Theory, 64(7):4689–4708, jan 2017.
  30. No second law of entanglement manipulation after all. Nature Physics, 19(2):184–189, jan 2023.
  31. The physics and mathematics of the second law of thermodynamics. Physics Reports, 310(1):1–96, 1999.
  32. Pure-state transformations and catalysis under operations that completely preserve positivity of partial transpose. Physical Review A, 78(1):012317, jul 2008.
  33. Asher Peres. Separability Criterion for Density Matrices. Physical Review Letters, 77(8):1413–1415, apr 1996.
  34. M B Plenio. Logarithmic Negativity: A Full Entanglement Monotone That is not Convex. Physical Review Letters, 95(9):090503, aug 2005.
  35. Martin B. Plenio. Problem 20. Problem 20 of the list https://oqp.iqoqi.oeaw.ac.at/open-quantum-problems, 2005.
  36. Eric M Rains. Entanglement purification via separable superoperators. Physical Review A, 60(1):179–184, jul 1997.
  37. Eric M. Rains. A semidefinite program for distillable entanglement. IEEE Transactions on Information Theory, 47(7):2921–2933, aug 2000.
  38. One-shot entanglement distillation beyond local operations and classical communication. New Journal of Physics, 21(10):103017, oct 2019.
  39. Reversibility of quantum resources through probabilistic protocols. arXiv preprint arXiv:2309.07206, sep 2023.
  40. Schmidt number for density matrices. Physical Review A, 61(4):40301, 2000.
  41. Irreversibility in Asymptotic Manipulations of Entanglement. Physical Review Letters, 86(25):5803–5806, jun 2001.
  42. Entanglement Cost of Bipartite Mixed States. Physical Review Letters, 89(2):027901, jun 2002.
  43. Computable measure of entanglement. Physical Review A, 65(3):032314, feb 2002.
  44. Irreversibility of entanglement distillation for a class of symmetric states. Physical Review A, 69(6):062304, jun 2004.
  45. Xin Wang. Pursuing the Fundamental Limits for Quantum Communication. IEEE Transactions on Information Theory, 67(7):4524–4532, jul 2021.
  46. Improved semidefinite programming upper bound on distillable entanglement. Physical Review A, 94(5):050301, nov 2016.
  47. Irreversibility of Asymptotic Entanglement Manipulation Under Quantum Operations Completely Preserving Positivity of Partial Transpose. Physical Review Letters, 119(18):180506, nov 2017.
  48. Nonadditivity of Rains’ bound for distillable entanglement. Physical Review A, 95(6):062322, jun 2017.
  49. Mark M. Wilde. Entanglement cost and quantum channel simulation. Physical Review A, 98(4):042338, oct 2018.
  50. Computable and Faithful Lower Bound for Entanglement Cost. arXiv preprint arXiv:2311.10649, nov 2023.
  51. Cost of Quantum Entanglement Simplified. Physical Review Letters, 125(4):040502, jul 2020.
  52. Operational resource theory of coherence. Physical Review Letters, 116(12), March 2016.
  53. Irreversibility for All Bound Entangled States. Physical Review Letters, 95(19):190501, oct 2005.
  54. Estimate distillable entanglement and quantum capacity by squeezing useless entanglement. arXiv preprint arXiv:2303.07228, mar 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.