Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying the unextendibility of entanglement (1911.07433v3)

Published 18 Nov 2019 in quant-ph, cs.IT, math-ph, math.IT, and math.MP

Abstract: Entanglement is a striking feature of quantum mechanics, and it has a key property called unextendibility. In this paper, we present a framework for quantifying and investigating the unextendibility of general bipartite quantum states. First, we define the unextendible entanglement, a family of entanglement measures based on the concept of a state-dependent set of free states. The intuition behind these measures is that the more entangled a bipartite state is, the less entangled each of its individual systems is with a third party. Second, we demonstrate that the unextendible entanglement is an entanglement monotone under two-extendible quantum operations, including local operations and one-way classical communication as a special case. Normalization and faithfulness are two other desirable properties of unextendible entanglement, which we establish here. We further show that the unextendible entanglement provides efficiently computable benchmarks for the rate of exact entanglement or secret key distillation, as well as the overhead of probabilistic entanglement or secret key distillation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (100)
  1. Strong monogamy of bipartite and genuine multipartite entanglement: the Gaussian case. Physical Review Letters, 99(15):150501, 2007.
  2. Asymptotic error rates in quantum hypothesis testing. Communications in Mathematical Physics, 279(1):251–283, 2008.
  3. Fluctuating states: What is the probability of a thermodynamical transition? Physical Review X, 6(4):041016, 2016.
  4. Huzihiro Araki. On an inequality of Lieb and Thirring. Letters in Mathematical Physics, 19:167–170, 1990.
  5. Semidefinite programming hierarchies for constrained bilinear optimization. Mathematical Programming, 194:781–829, July 2022. arXiv:1810.12197.
  6. Entanglement cost in practical scenarios. Physical Review Letters, 106(13):130503, 2011.
  7. Mixed-state entanglement and quantum error correction. Physical Review A, 54(5):3824, 1996.
  8. Salman Beigi. Sandwiched Rényi divergence satisfies data processing inequality. Journal of Mathematical Physics, 54(12):122202, 2013.
  9. Fernando G. S. L. Brandão. Entanglement theory and the quantum simulation of many-body physics. PhD thesis, Imperial College, 2008.
  10. Viacheslav P. Belavkin and P. Staszewski. C∗superscript𝐶∗C^{\ast}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebraic generalization of relative entropy and entropy. Annales de l’IHP Physique theorique, 37(1):51–58, 1982.
  11. The fidelity of recovery is multiplicative. IEEE Transactions on Information Theory, 62(4):1758–1763, 2016.
  12. Measurement-based entanglement under conditions of extreme photon loss. Physical Review Letters, 101(13):130502, 2008.
  13. Creation of entangled states of distant atoms by interference. Physical Review A, 59(2):1025, 1999.
  14. Quantum resource theories. Reviews of Modern Physics, 91(2):025001, 2019.
  15. Distributed entanglement. Physical Review A, 61(5):052306, 2000.
  16. “Squashed entanglement”: an additive entanglement measure. Journal of Mathematical Physics, 45(3):829–840, 2004.
  17. Nilanjana Datta. Min- and max-relative entropies and a new entanglement monotone. IEEE Transactions on Information Theory, 55(6):2816–2826, 2009.
  18. Efficiency of deterministic entanglement transformation. Physical Review A, 71(2):022305, 2005.
  19. A limit of the quantum Rényi divergence. Journal of Physics A: Mathematical and Theoretical, 47(4):045304, 2014.
  20. Andrew C. Doherty. Entanglement and the shareability of quantum states. Journal of Physics A: Mathematical and Theoretical, 47(42):424004, 2014.
  21. Distinguishing separable and entangled states. Physical Review Letters, 88(18):187904, 2002.
  22. Complete family of separability criteria. Physical Review A, 69(2):022308, 2004.
  23. Efficient optimization of the quantum relative entropy. Journal of Physics A: Mathematical and Theoretical, 51(15):154003, March 2018.
  24. Geometric Rényi divergence and its applications in quantum channel capacities. Communications in Mathematical Physics, 384:1615–1677, 2021. arXiv:1909.05758.
  25. Monotonicity of a relative Rényi entropy. Journal of Mathematical Physics, 54(12):122201, 2013.
  26. Semidefinite approximations of the matrix logarithm. Foundations of Computational Mathematics, 19(2):259–296, 2019.
  27. Non-asymptotic entanglement distillation. IEEE Transactions on Information Theory, 65(10):6454–6465, 2019.
  28. Codes for the quantum erasure channel. Physical Review A, 56(1):33, 1997.
  29. Quantum Zero-Error Information Theory. Springer, 2016.
  30. Gilad Gour and Yu Guo. Monogamy of entanglement without inequalities. Quantum, 2:81, 2018.
  31. Multiplicativity of completely bounded p𝑝pitalic_p-norms implies a strong converse for entanglement-assisted capacity. Communications in Mathematical Physics, 334(2):867–887, 2015.
  32. Masahito Hayashi. Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding. Physical Review A, 76(6):062301, 2007.
  33. Masahito Hayashi. Quantum Information Theory: Mathematical Foundation. Springer, 2016.
  34. Reduction criterion of separability and limits for a class of distillation protocols. Physical Review A, 59(6):4206, 1999.
  35. Asymptotic manipulations of entanglement can exhibit genuine irreversibility. Physical Review Letters, 84(19):4260, 2000.
  36. Quantum entanglement. Reviews of Modern Physics, 81(2):865, 2009.
  37. Secure key from bound entanglement. Physical Review Letters, 94(16):160502, 2005.
  38. General paradigm for distilling classical key from quantum states. IEEE Transactions on Information Theory, 55(4):1898–1929, 2009.
  39. The asymptotic entanglement cost of preparing a quantum state. Journal of Physics A: Mathematical and General, 34(35):6891, 2001.
  40. Quantum channel marginal problem. Physical Review Research, 4(1):013249, 2022.
  41. Different quantum f𝑓fitalic_f-divergences and the reversibility of quantum operations. Reviews in Mathematical Physics, 29(07):1750023, 2017.
  42. Two-message quantum interactive proofs and the quantum separability problem. In 2013 IEEE Conference on Computational Complexity, pages 156–167. IEEE, 2013.
  43. The proper formula for relative entropy and its asymptotics in quantum probability. Communications in Mathematical Physics, 143(1):99–114, 1991.
  44. Pretty good measures in quantum information theory. IEEE Transactions on Information Theory, 63(2):1270–1279, 2016.
  45. Compatible quantum correlations: Extension problems for werner and isotropic states. Phys. Rev. A, 88:032323, Sep 2013.
  46. Extendibility limits the performance of quantum processors. Physical Review Letters, 123(7):070502, 2019.
  47. Resource theory of unextendibility and nonasymptotic quantum capacity. Physical Review A, 104(2):022401, August 2021.
  48. Numerical evidence for bound secrecy from two-way postprocessing in quantum key distribution. Physical Review A, 95(4):042320, 2017.
  49. Monogamy of quantum entanglement and other correlations. Physical Review A, 69(2):022309, 2004.
  50. Principles of Quantum Communication Theory: A Modern Approach. November 2020. arXiv:2011.04672v1.
  51. Should entanglement measures be monogamous or faithful? Physical Review Letters, 117(6):060501, 2016.
  52. Useful states and entanglement distillation. IEEE Transactions on Information Theory, 64(7):4689–4708, 2017.
  53. Extendibility of bosonic Gaussian states. Physical Review Letters, 123(5):050501, 2019.
  54. Studies in Mathematical Physics, chapter Inequalities for the moments of the eigenvalues of the Schroedinger Hamiltonian and their relation to Sobolev inequalities, pages 269–297. Princeton University Press, Princeton, 1976.
  55. Keiji Matsumoto. A new quantum version of f𝑓fitalic_f-divergence. In Nagoya Winter Workshop: Reality and Measurement in Algebraic Quantum Theory, pages 229–273. Springer, 2015.
  56. One-way quantum key distribution: Simple upper bound on the secret key rate. Physical Review A, 74(5):052301, 2006.
  57. On quantum Rényi entropies: A new generalization and some properties. Journal of Mathematical Physics, 54(12):122203, 2013.
  58. Quantum hypothesis testing and the operational interpretation of the quantum Rényi relative entropies. Communications in Mathematical Physics, 334(3):1617–1648, 2015.
  59. Symmetric extension in two-way quantum key distribution. Physical Review A, 79(4):042329, 2009.
  60. Hiroshi Nagaoka. The converse part of the theorem for quantum Hoeffding bound. 2006. arXiv:quant-ph/0611289.
  61. Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Physical Review X, 4(4):041041, 2014.
  62. A simple test for quantum channel capacity. Journal of Physics A: Mathematical and Theoretical, 42(13):135306, 2009.
  63. General monogamy inequality for bipartite qubit entanglement. Physical Review Letters, 96(22):220503, 2006.
  64. Dénes Petz. Quasi-entropies for finite quantum systems. Reports on Mathematical Physics, 23(1):57–65, 1986.
  65. Entanglement purification for quantum communication. Nature, 410(6832):1067–1070, 2001.
  66. Arimoto channel coding converse and Rényi divergence. In 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1327–1333. IEEE, 2010.
  67. Eric M. Rains. Bound on distillable entanglement. Physical Review A, 60(1):179, 1999.
  68. Eric M. Rains. A semidefinite program for distillable entanglement. IEEE Transactions on Information Theory, 47(7):2921–2933, 2001.
  69. One-shot entanglement distillation beyond local operations and classical communication. New Journal of Physics, 21(10):103017, 2019.
  70. Coherence manipulation with dephasing-covariant operations. Physical Review Research, 2(1):013109, January 2020.
  71. Optimizing practical entanglement distillation. Physical Review A, 97(6):062333, June 2018.
  72. Rényi squashed entanglement, discord, and relative entropy differences. Journal of Physics A: Mathematical and Theoretical, 48(39):395303, 2015.
  73. On the strong converses for the quantum channel capacity theorems. 2012. arXiv:1205.1712.
  74. Fidelity of recovery, squashed entanglement, and measurement recoverability. Physical Review A, 92(4):042321, 2015.
  75. Symmetric extensions of quantum states and local hidden variable theories. Physical Review Letters, 90(15):157903, 2003.
  76. Barbara M. Terhal. Is entanglement monogamous? IBM Journal of Research and Development, 48(1):71–78, 2004.
  77. Marco Tomamichel. Quantum Information Processing with Finite Resources: Mathematical Foundations, volume 5. Springer, 2015.
  78. Strong converse rates for quantum communication. IEEE Transactions on Information Theory, 63(1):715–727, 2016.
  79. Armin Uhlmann. The “transition probability” in the state space of a ∗∗\ast∗-algebra. Reports on Mathematical Physics, 9(2):273–279, 1976.
  80. Hisaharu Umegaki. Conditional expectation in an operator algebra, IV (entropy and information). Kodai Mathematical Seminar Reports, 14(2):59–85, 1962.
  81. Entanglement cost of bipartite mixed states. Physical Review Letters, 89(2):027901, 2002.
  82. Guifré Vidal. Entanglement of pure states for a single copy. Physical Review Letters, 83(5):1046, 1999.
  83. Entanglement measures and purification procedures. Physical Review A, 57(3):1619, 1998.
  84. Quantifying entanglement. Physical Review Letters, 78(12):2275–2279, March 1997. arXiv:quant-ph/9702027.
  85. Computable measure of entanglement. Physical Review A, 65(3):032314, 2002.
  86. John Watrous. Simpler semidefinite programs for completely bounded norms. Chicago Journal OF Theoretical Computer Science, 8:1–19, 2013.
  87. Improved semidefinite programming upper bound on distillable entanglement. Physical Review A, 94(5):050301, 2016.
  88. Irreversibility of asymptotic entanglement manipulation under quantum operations completely preserving positivity of partial transpose. Physical Review Letters, 119(18):180506, 2017.
  89. Nonadditivity of Rains’ bound for distillable entanglement. Physical Review A, 95(6):062322, 2017.
  90. Reinhard F. Werner. An application of Bell’s inequalities to a quantum state extension problem. Letters in Mathematical Physics, 17(4):359–363, 1989.
  91. Semidefinite programming converse bounds for quantum communication. IEEE Transactions on Information Theory, 65(4):2583–2592, 2018.
  92. Mark M. Wilde. Quantum Information Theory. Cambridge University Press, second edition, 2017.
  93. Mark M. Wilde. Optimized quantum f𝑓fitalic_f-divergences and data processing. Journal of Physics A: Mathematical and Theoretical, 51(37):374002, 2018.
  94. Resource theory of asymmetric distinguishability. Physical Review Research, 1(3):033170, 2019.
  95. Exact entanglement cost of quantum states and channels under PPT-preserving operations. Physical Review A, 107(1):012429, January 2023.
  96. Quantification of unextendible entanglement and its applications in entanglement distillation. In 2020 IEEE International Symposium on Information Theory (ISIT), pages 1939–1943. IEEE, 2020.
  97. Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Communications in Mathematical Physics, 331(2):593–622, 2014.
  98. Approximate broadcasting of quantum correlations. Physical Review A, 96(2):022302, 2017.
  99. Dong Yang. A simple proof of monogamy of entanglement. Physics Letters A, 360(2):249–250, 2006.
  100. Practical distributed quantum information processing with LOCCNet. npj Quantum Information, 7(1):159, dec 2021.
Citations (10)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets