Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Detection and Imputation based Two-Stage Denoising Diffusion Power System Measurement Recovery under Cyber-Physical Uncertainties (2312.04346v2)

Published 7 Dec 2023 in cs.LG and cs.CR

Abstract: Power system cyber-physical uncertainties, including measurement ambiguities stemming from cyber attacks and data losses, along with system uncertainties introduced by massive renewables and complex dynamics, reduce the likelihood of enhancing the quality of measurements. Fortunately, denoising diffusion models exhibit powerful learning and generation abilities for the complex underlying physics of the real world. To this end, this paper proposes an improved detection and imputation based two-stage denoising diffusion model (TSDM) to identify and reconstruct the measurements with various cyber-physical uncertainties. The first stage of the model comprises a classifier-guided conditional anomaly detection component, while the second stage involves diffusion-based measurement imputation component. Moreover, the proposed TSDM adopts optimal variance to accelerate the diffusion generation process with subsequence sampling. Extensive numerical case studies demonstrate that the proposed TSDM can accurately recover power system measurements despite renewables-induced strong randomness and highly nonlinear dynamics. Additionally, the proposed TSDM has stronger robustness compared to existing reconstruction networks and exhibits lower computational complexity than general denoising diffusion models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. E. R. Fernandes, S. G. Ghiocel, and J. H. Chow, “Application of a phasor-only state estimator to a large power system using real pmu data,” IEEE Trans. Power Syst., vol. 32, no. 1, pp. 411–420, 2017.
  2. S. Pal, B. Sikdar, and J. H. Chow, “Classification and detection of pmu data manipulation attacks using transmission line parameters,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 5057–5066, 2018.
  3. S. Wei, J. Xu, and Z. Wu, “A false data injection attack detection strategy for unbalanced distribution networks state estimation,” IEEE Trans. Smart Grid, vol. 14, no. 5, pp. 3992–4006, 2023.
  4. Y. Li, Y. Wang, and S. Hu, “Online generative adversary network based measurement recovery in false data injection attacks: A cyber-physical approach,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 2031–2043, 2020.
  5. H. Wang, X. Wen, Y. Xu, and B. Zhou, “Operating state reconstruction in cyber physical smart grid for automatic attack filtering,” IEEE Trans. Ind. Informat., vol. 18, no. 5, pp. 2909–2922, 2022.
  6. T. Wu, W. Xue, and H. Wang, “Extreme learning machine-based state reconstruction for automatic attack filtering in cyber physical power system,” IEEE Trans. Ind. Informat., vol. 17, no. 3, pp. 1892–1904, 2021.
  7. J. Ruan, G. Liang, J. Zhao, J. Qiu, and Z. Y. Dong, “An inertia-based data recovery scheme for false data injection attack,” IEEE Trans. Ind. Informat., vol. 18, no. 11, pp. 7814–7823, 2022.
  8. Z. Yang, H. Liu, and T. Bi, “An adaptive pmu missing data recovery method,” Int. J. Elec. Power, vol. 116, p. 105577, 2020.
  9. J. J. Q. Yu, A. Y. S. Lam, and D. J. Hill, “Delay aware power system synchrophasor recovery and prediction framework,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3732–3742, 2019.
  10. J. J. Q. Yu, D. J. Hill, V. O. K. Li, and Y. Hou, “Synchrophasor recovery and prediction: A graph-based deep learning approach,” IEEE Internet Things J., vol. 6, no. 5, pp. 7348–7359, 2019.
  11. P. Gao, M. Wang, and J. H. Chow, “Missing data recovery by exploiting low-dimensionality in power system synchrophasor measurements,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1006–1013, 2016.
  12. J. Pei, J. Wang, Z. Wang, and D. Shi, “Precise recovery of corrupted synchrophasors based on autoregressive bayesian low-rank factorization and adaptive k-medoids clustering,” IEEE Trans. Power Syst., vol. 38, no. 6, pp. 5834–5848, 2023.
  13. M. Wang, J. H. Chow, and D. Osipov, “Review of low-rank data-driven methods applied to synchrophasor measurement,” IEEE Open Access Journal of Power and Energy, vol. 8, pp. 532–542, 2021.
  14. K. Mahapatra and N. R. Chaudhuri, “Malicious corruption-resilient wide-area oscillation monitoring using principal component pursuit,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1813–1825, 2019.
  15. M. Liao, D. Shi, and Z. Yu, “An alternating direction method of multipliers based approach for pmu data recovery,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 4554–4565, 2019.
  16. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in 34th Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada, Dec. 2020, pp. 1–25.
  17. J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in International Conference on Learning Representations (ICLR), Online, May 2021, pp. 1–22.
  18. J. Zhao, Z. Zheng, and S. Wang, “Correlation-aided robust decentralized dynamic state estimation of power systems with unknown control inputs,” IEEE Trans. Power Syst., vol. 35, no. 3, pp. 2443–2451, 2020.
  19. T. K. Chau, S. Yu, T. L. Fernando, and H. H.-C. Iu, “An adaptive-phasor approach to pmu measurement rectification for lfod enhancement,” IEEE Trans. Power Syst., vol. 34, no. 5, pp. 3941–3950, 2019.
  20. H. Li, J. H. Yeo, and A. L. Bornsheuer, “The creation and validation of load time series for synthetic electric power systems,” IEEE Trans. Power Syst., vol. 36, no. 2, pp. 961–969, 2021.
  21. J.-F. Toubeau and J. Bottieau, “Data-driven scheduling of energy storage in day-ahead energy and reserve markets with probabilistic guarantees on real-time delivery,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 2815–2828, 2021.
  22. H. Cui, F. Li, and K. Tomsovic, “Hybrid symbolic-numeric framework for power system modeling and analysis,” IEEE Trans. Power Syst., vol. 36, no. 2, pp. 1373–1384, 2021.
  23. S. Chakrabarti and E. Kyriakides, “Optimal placement of phasor measurement units for power system observability,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1433–1440, 2008.
  24. J. Qi, K. Sun, and W. Kang, “Optimal pmu placement for power system dynamic state estimation by using empirical observability gramian,” IEEE Trans. Power Syst., vol. 30, no. 4, pp. 2041–2054, 2015.
  25. M. Picot and F. J. Messina, “Robust autoencoder-based state estimation in power systems,” in 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2022, pp. 1–5.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets