Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LLaRA: Large Language-Recommendation Assistant (2312.02445v4)

Published 5 Dec 2023 in cs.IR

Abstract: Sequential recommendation aims to predict users' next interaction with items based on their past engagement sequence. Recently, the advent of LLMs has sparked interest in leveraging them for sequential recommendation, viewing it as LLMing. Previous studies represent items within LLMs' input prompts as either ID indices or textual metadata. However, these approaches often fail to either encapsulate comprehensive world knowledge or exhibit sufficient behavioral understanding. To combine the complementary strengths of conventional recommenders in capturing behavioral patterns of users and LLMs in encoding world knowledge about items, we introduce Large Language-Recommendation Assistant (LLaRA). Specifically, it uses a novel hybrid prompting method that integrates ID-based item embeddings learned by traditional recommendation models with textual item features. Treating the "sequential behaviors of users" as a distinct modality beyond texts, we employ a projector to align the traditional recommender's ID embeddings with the LLM's input space. Moreover, rather than directly exposing the hybrid prompt to LLMs, a curriculum learning strategy is adopted to gradually ramp up training complexity. Initially, we warm up the LLM using text-only prompts, which better suit its inherent LLMing ability. Subsequently, we progressively transition to the hybrid prompts, training the model to seamlessly incorporate the behavioral knowledge from the traditional sequential recommender into the LLM. Empirical results validate the effectiveness of our proposed framework. Codes are available at https://github.com/ljy0ustc/LLaRA.

An Expert Review on "LLaRA: Large Language-Recommendation Assistant"

The paper "LLaRA: Large Language-Recommendation Assistant" introduces a novel framework that synthesizes LLMs with conventional recommendation systems to enhance sequential recommendation tasks. Addressing a critical challenge in leveraging LLMs for recommendation, the authors propose integrating the behavioral patterns learned by traditional recommendation models with the extensive world knowledge and reasoning capabilities of LLMs.

Core Contributions

The principal contribution of the paper is the innovative framework named LLaRA, which stands for Large Language-Recommendation Assistant. This framework fuses traditional sequential recommenders with LLMs through a hybrid prompting mechanism and a strategically designed curriculum prompt tuning strategy. Here are the primary components of LLaRA's implementation:

  1. Hybrid Prompting Method: LLaRA employs a hybrid item representation that combines ID-based embeddings from traditional recommendation models with textual features. This creates a multi-faceted item representation, facilitating the capture of user behavior through ID embeddings while utilizing LLMs' semantic understanding of textual metadata.
  2. Curriculum Prompt Tuning: A significant novelty of LLaRA lies in its curriculum learning scheme. The authors propose a multi-stage training process, initially focusing on text-only prompting to align with the LLMing capacity of LLMs, and subsequently transitioning to more complex hybrid prompting. This gradual learning approach enables LLMs to assimilate complex behavioral patterns over time, aligning the sequential recommender’s insights with LLMs' robust interpretative capabilities.

Experimental Evaluation

The effectiveness of LLaRA was validated on three datasets: MovieLens, Steam, and LastFM, where it consistently outperformed both traditional approaches (such as GRU4Rec, Caser, and SASRec) and LLM-based recommendation methods (including Llama2, GPT-4, MoRec, and TALLRec). Notable findings from the experiments are:

  • HitRatio@1: LLaRA achieved the highest scores across all tested datasets, indicating superior performance in predicting users' next interactions. This reflects the successful integration of sequential behavior patterns with language-based knowledge.
  • Validity Ratio: The approach demonstrated high validity in generating responses that adhered closely to the training instructions, showcasing its robust instruction-following capability.

Theoretical and Practical Implications

The implications of the findings are two-fold:

  • Theoretical Advancements: The framework presents a novel alignment mechanism between traditional recommendation models and LLMs. By incorporating multi-modal alignments, it paves the way for future research on enhanced integration of sequential and semantic information in LLM-driven recommendation systems.
  • Practical Applications: The practical implication of LLaRA is substantial in domains requiring personalized recommendation solutions that benefit from both user behavior patterns and in-depth item-related knowledge. Its application can extend to more comprehensive recommendation scenarios beyond sequential prediction, offering a more unified and holistic approach to recommendation systems.

Future Directions

The authors highlight several potential directions for extending this research. One significant area is enhancing the LLaRA framework to accommodate a broader range of modalities beyond text and item embeddings. This expansion could include incorporating real-time user feedback and evolving preferences. Furthermore, refining the curriculum learning strategy could enable even more adaptive integration with emerging paradigms in LLMing and user preference analytics.

In conclusion, LLaRA is a significant step towards integrating conventional recommendation approaches with the expansive capabilities of LLMs. By bridging the gap between empirical behavior analysis and semantic understanding, this framework offers a compelling path forward in developing robust, insightful, and user-centric recommendation systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. H. Fang, D. Zhang, Y. Shu, and G. Guo, “Deep learning for sequential recommendation: Algorithms, influential factors, and evaluations,” ACM Trans. Inf. Syst., vol. 39, no. 1, pp. 10:1–10:42, 2020.
  2. S. Wang, L. Hu, Y. Wang, L. Cao, Q. Z. Sheng, and M. A. Orgun, “Sequential recommender systems: Challenges, progress and prospects,” in IJCAI.   ijcai.org, 2019, pp. 6332–6338.
  3. B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recommendations with recurrent neural networks,” in ICLR (Poster), 2016.
  4. J. Tang and K. Wang, “Personalized top-n sequential recommendation via convolutional sequence embedding,” in WSDM.   ACM, 2018, pp. 565–573.
  5. W. Kang and J. J. McAuley, “Self-attentive sequential recommendation,” in ICDM.   IEEE Computer Society, 2018, pp. 197–206.
  6. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in NeurIPS, 2020.
  7. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient foundation language models,” CoRR, vol. abs/2302.13971, 2023.
  8. R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin, P. Liang, and T. B. Hashimoto, “Stanford alpaca: An instruction-following llama model,” https://github.com/tatsu-lab/stanford_alpaca, 2023.
  9. W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez, I. Stoica, and E. P. Xing, “Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality,” March 2023. [Online]. Available: https://lmsys.org/blog/2023-03-30-vicuna/
  10. J. Li, M. Wang, J. Li, J. Fu, X. Shen, J. Shang, and J. J. McAuley, “Text is all you need: Learning language representations for sequential recommendation,” in KDD.   ACM, 2023, pp. 1258–1267.
  11. K. Bao, J. Zhang, Y. Zhang, W. Wang, F. Feng, and X. He, “Tallrec: An effective and efficient tuning framework to align large language model with recommendation,” in RecSys.   ACM, 2023, pp. 1007–1014.
  12. S. Geng, S. Liu, Z. Fu, Y. Ge, and Y. Zhang, “Recommendation as language processing (RLP): A unified pretrain, personalized prompt & predict paradigm (P5),” in RecSys.   ACM, 2022, pp. 299–315.
  13. Z. Cui, J. Ma, C. Zhou, J. Zhou, and H. Yang, “M6-rec: Generative pretrained language models are open-ended recommender systems,” CoRR, vol. abs/2205.08084, 2022.
  14. J. Ji, Z. Li, S. Xu, W. Hua, Y. Ge, J. Tan, and Y. Zhang, “Genrec: Large language model for generative recommendation,” CoRR, vol. abs/2307.00457, 2023.
  15. S. Dai, N. Shao, H. Zhao, W. Yu, Z. Si, C. Xu, Z. Sun, X. Zhang, and J. Xu, “Uncovering chatgpt’s capabilities in recommender systems,” in RecSys.   ACM, 2023, pp. 1126–1132.
  16. J. Liu, C. Liu, R. Lv, K. Zhou, and Y. Zhang, “Is chatgpt a good recommender? A preliminary study,” CoRR, vol. abs/2304.10149, 2023.
  17. Y. Hou, J. Zhang, Z. Lin, H. Lu, R. Xie, J. J. McAuley, and W. X. Zhao, “Large language models are zero-shot rankers for recommender systems,” CoRR, vol. abs/2305.08845, 2023.
  18. W. Hua, S. Xu, Y. Ge, and Y. Zhang, “How to index item ids for recommendation foundation models,” CoRR, vol. abs/2305.06569, 2023.
  19. Y. Hou, Z. He, J. J. McAuley, and W. X. Zhao, “Learning vector-quantized item representation for transferable sequential recommenders,” in WWW.   ACM, 2023, pp. 1162–1171.
  20. J. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch, K. Millican, M. Reynolds, R. Ring, E. Rutherford, S. Cabi, T. Han, Z. Gong, S. Samangooei, M. Monteiro, J. L. Menick, S. Borgeaud, A. Brock, A. Nematzadeh, S. Sharifzadeh, M. Binkowski, R. Barreira, O. Vinyals, A. Zisserman, and K. Simonyan, “Flamingo: a visual language model for few-shot learning,” in NeurIPS, 2022.
  21. D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “Minigpt-4: Enhancing vision-language understanding with advanced large language models,” arXiv preprint arXiv:2304.10592, 2023.
  22. D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke, K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence, “Palm-e: An embodied multimodal language model,” in ICML, ser. Proceedings of Machine Learning Research, vol. 202.   PMLR, 2023, pp. 8469–8488.
  23. R. Huang, M. Li, D. Yang, J. Shi, X. Chang, Z. Ye, Y. Wu, Z. Hong, J. Huang, J. Liu, Y. Ren, Z. Zhao, and S. Watanabe, “Audiogpt: Understanding and generating speech, music, sound, and talking head,” CoRR, vol. abs/2304.12995, 2023.
  24. Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in ICML, ser. ACM International Conference Proceeding Series, vol. 382.   ACM, 2009, pp. 41–48.
  25. X. Wang, Y. Chen, and W. Zhu, “A survey on curriculum learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9, pp. 4555–4576, 2022.
  26. F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 19:1–19:19, 2016.
  27. OpenAI, “GPT-4 technical report,” CoRR, vol. abs/2303.08774, 2023.
  28. Z. Yuan, F. Yuan, Y. Song, Y. Li, J. Fu, F. Yang, Y. Pan, and Y. Ni, “Where to go next for recommender systems? ID- vs. modality-based recommender models revisited,” in SIGIR.   ACM, 2023, pp. 2639–2649.
  29. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21, pp. 140:1–140:67, 2020.
  30. J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” in NAACL-HLT (1).   Association for Computational Linguistics, 2019, pp. 4171–4186.
  31. L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica, “Judging llm-as-a-judge with mt-bench and chatbot arena,” 2023.
  32. S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann, P. Kambadur, D. S. Rosenberg, and G. Mann, “Bloomberggpt: A large language model for finance,” CoRR, vol. abs/2303.17564, 2023.
  33. K. Singhal, S. Azizi, T. Tu, S. S. Mahdavi, J. Wei, H. W. Chung, N. Scales, A. Tanwani, H. Cole-Lewis, S. Pfohl, P. Payne, M. Seneviratne, P. Gamble, C. Kelly, N. Scharli, A. Chowdhery, P. Mansfield, B. A. y Arcas, D. Webster, G. S. Corrado, Y. Matias, K. Chou, J. Gottweis, N. Tomasev, Y. Liu, A. Rajkomar, J. Barral, C. Semturs, A. Karthikesalingam, and V. Natarajan, “Large language models encode clinical knowledge,” 2022.
  34. J. Cui, Z. Li, Y. Yan, B. Chen, and L. Yuan, “Chatlaw: Open-source legal large language model with integrated external knowledge bases,” 2023.
  35. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever, “Learning transferable visual models from natural language supervision,” in ICML, ser. Proceedings of Machine Learning Research, vol. 139.   PMLR, 2021, pp. 8748–8763.
  36. Y. Li, F. Liang, L. Zhao, Y. Cui, W. Ouyang, J. Shao, F. Yu, and J. Yan, “Supervision exists everywhere: A data efficient contrastive language-image pre-training paradigm,” in ICLR.   OpenReview.net, 2022.
  37. J. Li, D. Li, S. Savarese, and S. C. H. Hoi, “BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models,” CoRR, vol. abs/2301.12597, 2023.
  38. M. Tsimpoukelli, J. Menick, S. Cabi, S. M. A. Eslami, O. Vinyals, and F. Hill, “Multimodal few-shot learning with frozen language models,” in NeurIPS, 2021, pp. 200–212.
  39. H. Zhang, X. Li, and L. Bing, “Video-llama: An instruction-tuned audio-visual language model for video understanding,” arXiv, 2023.
  40. C. Lyu, M. Wu, L. Wang, X. Huang, B. Liu, Z. Du, S. Shi, and Z. Tu, “Macaw-llm: Multi-modal language modeling with image, audio, video, and text integration,” arXiv, 2023.
  41. Y. K. Tan, X. Xu, and Y. Liu, “Improved recurrent neural networks for session-based recommendations,” in DLRS@RecSys.   ACM, 2016, pp. 17–22.
  42. M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi, “Personalizing session-based recommendations with hierarchical recurrent neural networks,” in RecSys.   ACM, 2017, pp. 130–137.
  43. A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, and E. H. Chi, “Latent cross: Making use of context in recurrent recommender systems,” in WSDM.   ACM, 2018, pp. 46–54.
  44. B. Hidasi, M. Quadrana, A. Karatzoglou, and D. Tikk, “Parallel recurrent neural network architectures for feature-rich session-based recommendations,” in RecSys.   ACM, 2016, pp. 241–248.
  45. T. X. Tuan and T. M. Phuong, “3d convolutional networks for session-based recommendation with content features,” in RecSys.   ACM, 2017, pp. 138–146.
  46. F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He, “A simple convolutional generative network for next item recommendation,” in WSDM.   ACM, 2019, pp. 582–590.
  47. F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer,” in CIKM.   ACM, 2019, pp. 1441–1450.
  48. Z. Wang, S. Shen, Z. Wang, B. Chen, X. Chen, and J. Wen, “Unbiased sequential recommendation with latent confounders,” in WWW.   ACM, 2022, pp. 2195–2204.
  49. A. Zhang, F. Liu, W. Ma, Z. Cai, X. Wang, and T. Chua, “Boosting differentiable causal discovery via adaptive sample reweighting,” CoRR, vol. abs/2303.03187, 2023.
  50. Y. Zhang, F. Feng, X. He, T. Wei, C. Song, G. Ling, and Y. Zhang, “Causal intervention for leveraging popularity bias in recommendation,” in SIGIR.   ACM, 2021, pp. 11–20.
  51. R. Qiu, Z. Huang, H. Yin, and Z. Wang, “Contrastive learning for representation degeneration problem in sequential recommendation,” in WSDM.   ACM, 2022, pp. 813–823.
  52. X. Xie, F. Sun, Z. Liu, S. Wu, J. Gao, J. Zhang, B. Ding, and B. Cui, “Contrastive learning for sequential recommendation,” in ICDE.   IEEE, 2022, pp. 1259–1273.
  53. A. Zhang, W. Ma, X. Wang, and T. Chua, “Incorporating bias-aware margins into contrastive loss for collaborative filtering,” in NeurIPS, 2022.
  54. Z. Yang, X. He, J. Zhang, J. Wu, X. Xin, J. Chen, and X. Wang, “A generic learning framework for sequential recommendation with distribution shifts,” in SIGIR.   ACM, 2023, pp. 331–340.
  55. J. Lin, X. Dai, Y. Xi, W. Liu, B. Chen, X. Li, C. Zhu, H. Guo, Y. Yu, R. Tang, and W. Zhang, “How can recommender systems benefit from large language models: A survey,” CoRR, vol. abs/2306.05817, 2023.
  56. L. Wu, Z. Zheng, Z. Qiu, H. Wang, H. Gu, T. Shen, C. Qin, C. Zhu, H. Zhu, Q. Liu, H. Xiong, and E. Chen, “A survey on large language models for recommendation,” CoRR, vol. abs/2305.19860, 2023.
  57. Y. Hou, S. Mu, W. X. Zhao, Y. Li, B. Ding, and J. Wen, “Towards universal sequence representation learning for recommender systems,” in KDD.   ACM, 2022, pp. 585–593.
  58. V. Lialin, V. Deshpande, and A. Rumshisky, “Scaling down to scale up: A guide to parameter-efficient fine-tuning,” CoRR, vol. abs/2303.15647, 2023.
  59. X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for generation,” in ACL/IJCNLP (1).   Association for Computational Linguistics, 2021, pp. 4582–4597.
  60. X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang, “GPT understands, too,” CoRR, vol. abs/2103.10385, 2021.
  61. B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for parameter-efficient prompt tuning,” in EMNLP (1).   Association for Computational Linguistics, 2021, pp. 3045–3059.
  62. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” in ICLR.   OpenReview.net, 2022.
  63. Y. Ji, A. Sun, J. Zhang, and C. Li, “A critical study on data leakage in recommender system offline evaluation,” ACM Trans. Inf. Syst., vol. 41, no. 3, pp. 75:1–75:27, 2023.
  64. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton-Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open foundation and fine-tuned chat models,” CoRR, vol. abs/2307.09288, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Jiayi Liao (5 papers)
  2. Sihang Li (32 papers)
  3. Zhengyi Yang (24 papers)
  4. Jiancan Wu (38 papers)
  5. Yancheng Yuan (36 papers)
  6. Xiang Wang (279 papers)
  7. Xiangnan He (200 papers)
Citations (15)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub