Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 36 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Kirchhoff Meets Johnson: In Pursuit of Unconditionally Secure Communication (2312.02042v3)

Published 4 Dec 2023 in cs.IT, cs.CR, eess.SP, and math.IT

Abstract: Noise: an enemy to be dealt with and a major factor limiting communication system performance. However, what if there is gold in that garbage? In conventional engineering, our focus is primarily on eliminating, suppressing, combating, or even ignoring noise and its detrimental impacts. Conversely, could we exploit it similarly to biology, which utilizes noise-alike carrier signals to convey information? In this context, the utilization of noise, or noise-alike signals in general, has been put forward as a means to realize unconditionally secure communication systems in the future. In this tutorial article, we begin by tracing the origins of thermal noise-based communication and highlighting one of its significant applications for ensuring unconditionally secure networks: the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange scheme. We then delve into the inherent challenges tied to secure communication and discuss the imperative need for physics-based key distribution schemes in pursuit of unconditional security. Concurrently, we provide a concise overview of quantum key distribution (QKD) schemes and draw comparisons with their KLJN-based counterparts. Finally, extending beyond wired communication loops, we explore the transmission of noise signals over-the-air and evaluate their potential for stealth and secure wireless communication systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas, J. S. Thompson, E. G. Larsson, M. D. Renzo, W. Tong, P. Zhu, X. Shen, H. V. Poor, and L. Hanzo, “On the road to 6G: Visions, requirements, key technologies, and testbeds,” IEEE Commun. Surveys Tuts., vol. 25, no. 2, pp. 905–974, 2nd Quarter 2023.
  2. E. Basar, “Communication by means of thermal noise: Towards networks with extremely low power consumption,” IEEE Trans. Commun., vol. 71, no. 2, pp. 688–699, Feb. 2023.
  3. L. B. Kish, “Stealth communication: Zero-power classical communication, zero-quantum quantum communication and environmental-noise communication,” Appl. Phys. Lett., vol. 87, no. 23, p. 234109, Dec. 2005.
  4. H. Stockman, “Communication by means of reflected power,” Proc. IRE, vol. 36, no. 10, pp. 1196–1204, Oct. 1948.
  5. L. B. Kish, “Totally secure classical communication utilizing Johnson (-like) noise and Kirchoff’s law,” Phys. Lett. A, vol. 352, pp. 178–182, Sept. 2006.
  6. ——, “Protection against the man-in-the-middle-attack for the Kirchhoff-loop-Johnson(-like)-noise cipher and expansion by voltage-based security,” Fluct. Noise Lett., vol. 6, no. 1, pp. L57–L63, Apr. 2006.
  7. “Quantum cryptography outperformed by classical technique,” MIT Technology Review, June 2012. [Online]. Available: https://www.technologyreview.com/2012/06/14/255821/quantum-cryptography-outperformed-by-classical-technique/
  8. A. Cho, “Simple noise may stymie spies without quantum weirdness,” Science, vol. 309, no. 5744, pp. 2148–2148, Sept. 2005.
  9. E. Basar, “Index modulation techniques for 5G wireless networks,” IEEE Commun. Mag., vol. 54, no. 7, pp. 168–175, June 2016.
  10. (2020, Oct.) Quantum key distribution (QKD) and quantum cryptography (QC). [Online]. Available: https://www.nsa.gov/Cybersecurity/Quantum-Key-Distribution-QKD-and-Quantum-Cryptography-QC/
  11. G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” Trans. AIEE, vol. XLV, pp. 295–301, Jan.-Dec. 1926.
  12. C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J., vol. 28, no. 4, pp. 656–715, Oct. 1949.
  13. J. Massey, “An introduction to contemporary cryptology,” Proc. IEEE, vol. 76, no. 5, pp. 533–549, May 1988.
  14. L. B. Kish and S. Sethuraman, “Non-breakable data encryption with classical information,” Fluct. Noise Lett., vol. 04, no. 02, pp. C1–C5, June 2004.
  15. J. M. Chappell, L. J. Gunn, and D. Abbott, “The double-padlock problem: Is secure classical information transmission possible without key exchange?” Int. J. Modern Physics: Conf. Series, vol. 33, p. 1460355, Sep. 2014.
  16. L. Sattler and D. Pacella, “Quantum key distribution (QKD): Safeguarding for the future,” ComSoc Technology News (CTN), Feb. 2022. [Online]. Available: https://www.comsoc.org/publications/ctn/quantum-key-distribution-qkd-safeguarding-future
  17. H. V. Poor and R. F. Schaefer, “Wireless physical layer security,” Proc. Nat. Acad. Sci., vol. 114, no. 1, pp. 19–26, Dec.
  18. M. S. J. Solaija, H. Salman, and H. Arslan, “Towards a unified framework for physical layer security in 5g and beyond networks,” IEEE Open J. Veh. Technol., vol. 3, pp. 321–343, June 2022.
  19. K. Zeng, “Physical layer key generation in wireless networks: Challenges and opportunities,” IEEE Commun. Mag., vol. 53, no. 6, pp. 33–39, June 2015.
  20. S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,” IEEE Transac. Wireless Commun., vol. 7, no. 6, pp. 2180–2189, June 2008.
  21. B. He, Y. She, and V. K. N. Lau, “Artificial noise injection for securing single-antenna systems,” IEEE Trans. Veh. Technol., vol. 66, no. 10, pp. 9577–9581, Oct. 2017.
  22. X. Guan, Q. Wu, and R. Zhang, “Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?” IEEE Wireless Commun.Lett., vol. 9, no. 6, pp. 778–782, June 2020.
  23. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor Comput. Sci., vol. 560, pp. 7–11, Dec. 2014.
  24. R. Mingesz, Z. Gingl, and L. B. Kish, “Johnson(-like)–noise–Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line,” Phys. Lett. A, vol. 372, no. 7, pp. 978–984, Feb. 2008.
  25. (2022) Clavis XG QKD system. [Online]. Available: https://www.idquantique.com/quantum-safe-security/products/clavis-xg-qkd-system/
  26. L. B. Kish and J. Scheuer, “Noise in the wire: The real impact of wire resistance for the Johnson(-like) noise based secure communicator,” Phys. Lett. A, vol. 374, no. 21, pp. 2140–2142, Apr. 2010.
  27. Z. Gingl and R. Mingesz, “Noise properties in the ideal Kirchhoff-law-Johnson-noise secure communication system,” PLoS ONE, vol. 9, no. 4, p. e96109, Apr. 2014.
  28. G. Vadai, R. Mingesz, and Z. Gingl, “Generalized Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system using arbitrary resistors,” Sci. Rep., vol. 5, no. 13653, Sept. 2015.
  29. S. Ferdous, C. Chamon, and L. B. Kish, “Comments on the “Generalized” KJLN key exchanger with arbitrary resistors: Power, impedance, security,” Fluct. Noise Lett., vol. 20, no. 1, p. 2130002, Nov. 2020.
  30. Y. Saez and L. B. Kish, “Errors and their mitigation at the Kirchhoff-law-Johnson-noise secure key exchange,” PLOS ONE, vol. 8, no. 11, pp. 1–7, Nov. 2013.
  31. Y. Saez, L. B. Kish, R. Mingesz, Z. Gingl, and C. G. Granqvist, “Current and voltage based bit errors and their combined mitigation for the Kirchhoff-law–Johnson-noise secure key exchange,” J. Comput. Electron., vol. 13, no. 1, p. 271–277, Mar. 2013.
  32. J. Smulko, “Performance analysis of the “intelligent” Kirchhoff-law-Johnson-noise secure key exchange,” Int. J. Mod. Phys. Conf. Ser., vol. 33, no. 1460368, Sept. 2014.
  33. L. B. Kish and C. G. Granqvist, “Random-resistor-random-temperature Kirchhoff-law-Johnson-noise (RRRT-KLJN) key exchange,” Metrol. Meas. Syst., vol. 23, no. 1, pp. 3–11, Mar. 2016.
  34. C. H. Bennett and C. J. Riedel, “On the security of key distribution based on Johnson-Nyquist noise,” Mar. 2013. [Online]. Available: https://arxiv.org/abs/1303.7435
  35. L. J. Gunn, A. Allison, and D. Abbott, “A directional wave measurement attack against the Kish key distribution system,” Sci. Rep., vol. 4, no. 6461, Sept. 2014.
  36. ——, “A new transient attack on the Kish key distribution system,” IEEE Access, vol. 3, pp. 1640–1648, Sept. 2015.
  37. L. B. Kish and C.-G. Granqvist, “Elimination of a second-law-attack, and all cable-resistance-based attacks, in the Kirchhoff-law-Johnson-noise (KLJN) secure key exchange system,” Entropy, vol. 16, no. 10, pp. 5223–5231, Oct. 2014.
  38. H.-P. Chen, E. Gonzalez, Y. Saez, and L. B. Kish, “Cable capacitance attack against the KLJN secure key exchange,” Information, vol. 6, no. 4, pp. 719–732, Oct. 2015.
  39. H.-P. Chen, M. Mohammad, and L. B. Kish, “Current injection attack against the KLJN secure key exchange,” Metrol. Meas. Syst., vol. 23, no. 2, pp. 173–181, May 2016.
  40. C. Chamon, S. Ferdous, and L. B. Kish, “Deterministic random number generator attack against the Kirchhoff-law-Johnson-noise secure key exchange protocol,” Fluct. Noise Lett., vol. 20, no. 05, p. 2150046, Apr. 2021.
  41. C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett., vol. 68, pp. 3121–3124, May 1992.
  42. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett., vol. 92, p. 057901, Feb. 2004.
  43. Y. Cao, Y. Zhao, Q. Wang, J. Zhang, S. X. Ng, and L. Hanzo, “The evolution of quantum key distribution networks: On the road to the Qinternet,” IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 839–894, 2nd Quarter 2022.
  44. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, “Limitations on practical quantum cryptography,” Phys. Rev. Lett., vol. 85, pp. 1330–1333, Aug. 2000.
  45. H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett., vol. 94, p. 230504, June 2005.
  46. W. Liu, K. Huang, X. Zhou, and S. Durani, “Next generation backscatter communication: Systems, techniques, and applications,” J. Wireless Com. Network, vol. 69, no. 69, Mar. 2019.
  47. Z. Kapetanovic, M. Morales, and J. R. Smith, “Communication by means of modulated Johnson noise,” Proc. Natl. Acad. Sci., vol. 119, no. 49, p. e2201337119, Nov. 2022.
  48. M. Kramer and H. Bessai, “Sigma shift keying (SSK): A paradigm shift in digital modulation techniques,” in 2017 2nd Int. Conf. Comput. Commun. Syst. (ICCCS), 2017, pp. 60–64.
  49. D. A. Basnayaka and H. Haas, “A new degree of freedom for energy efficiency of digital communication systems,” IEEE Trans. Commun., vol. 65, no. 7, pp. 3023–3036, June 2017.
  50. M. Kozlenko and A. Bosyi, “Performance of spread spectrum system with noise shift keying using entropy demodulation,” in 2018 14th Int. Conf. Advanced Trends Radioelecrtron. Telecommu. Comput. Eng. (TCSET), 2018, pp. 330–333.
  51. T. Anand, “A stochastic wireline communication system,” in Proc. 2019 IEEE 62nd Int. Midwest Symp. Circuits Syst., Dallas, TX, USA, 2019.
  52. E. Basar, “Noise modulation,” IEEE Wireless Commun. Lett. (to appear), pp. 1–5, Dec. 2023.
  53. L. Mucchi, S. Caputo, P. Marcocci, G. Chisci, L. Ronga, and E. Panayirci, “Security and reliability performance of noise-loop modulation: Theoretical analysis and experimentation,” IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6335–6350, June 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube