Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability and Approximations for Decorated Reeb Spaces (2312.01982v2)

Published 4 Dec 2023 in math.MG, cs.CG, and math.AT

Abstract: Given a map $f:X \to M$ from a topological space $X$ to a metric space $M$, a decorated Reeb space consists of the Reeb space, together with an attribution function whose values recover geometric information lost during the construction of the Reeb space. For example, when $M=\mathbb{R}$ is the real line, the Reeb space is the well-known Reeb graph, and the attributions may consist of persistence diagrams summarizing the level set topology of $f$. In this paper, we introduce decorated Reeb spaces in various flavors and prove that our constructions are Gromov-Hausdorff stable. We also provide results on approximating decorated Reeb spaces from finite samples and leverage these to develop a computational framework for applying these constructions to point cloud data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Persistence images: A stable vector representation of persistent homology. Journal of Machine Learning Research, 18, 2017.
  2. On metrics for analysis of functional data on geometric domains, 2024. arXiv:2309.10907.
  3. Measuring distance between Reeb graphs. In Proceedings of the thirtieth annual symposium on Computational geometry, pages 464–473, 2014.
  4. Universality of the homotopy interleaving distance. Transactions of the American Mathematical Society, 376(12):8269–8307, 2023.
  5. The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1-7):107–117, 1998.
  6. Gunnar Carlsson. Topological pattern recognition for point cloud data. Acta Numerica, 23:289–368, 2014.
  7. Gromov-Hausdorff stable signatures for shapes using persistence. Computer Graphics Forum, 28(5):1393–1403, 2009.
  8. Persistence stability for geometric complexes. Geometriae Dedicata, 173(1):193–214, 2014.
  9. William Crawley-Boevey. Decomposition of pointwise finite-dimensional persistence modules. Journal of Algebra and its Applications, 14(05):1550066, 2015.
  10. Decorated merge trees for persistent topology. Journal of Applied and Computational Topology, 6(3):371–428, 2022.
  11. Convergence of leray cosheaves for decorated mapper graphs, 2023. arXiv:2303.00130.
  12. Stability and approximations for decorated reeb spaces, 2023. arXiv:2312.01982.
  13. Topologically attributed graphs for shape discrimination. In Topological, Algebraic and Geometric Learning Workshops 2023, pages 87–101. PMLR, 2023.
  14. Categorified Reeb graphs. Discrete & Computational Geometry, 55(4):854–906, 2016.
  15. Reeb spaces of piecewise linear mappings. In Proceedings of the twenty-fourth annual symposium on Computational geometry, pages 242–250, 2008.
  16. Ryszard Engelking. General Topology. Heldermann Verlag Berlin, 1989.
  17. Pot: Python optimal transport. The Journal of Machine Learning Research, 22(1):3571–3578, 2021.
  18. The persistent homotopy type distance. Homology, Homotopy and Applications, 21(2):231–259, 2019.
  19. Data skeletonization via Reeb graphs. Advances in Neural Information Processing Systems, 24, 2011.
  20. B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Algorithms and Combinatorics. Springer Berlin Heidelberg, 2012.
  21. Aleksandr Semenovich Kronrod. On functions of two variables. Uspekhi matematicheskikh nauk, 5(1):24–134, 1950.
  22. Claudia Landi. The rank invariant stability via interleavings. Research in computational topology, pages 1–10, 2018.
  23. Michael Lesnick. The theory of the interleaving distance on multidimensional persistence modules. Foundations of Computational Mathematics, 15(3):613–650, 2015.
  24. Comparing morse complexes using optimal transport: An experimental study, 2023. arXiv:2309.04681.
  25. Flexible and probabilistic topology tracking with partial optimal transport, 2023. arXiv:2302.02895.
  26. Facundo Mémoli. Gromov–Wasserstein distances and the metric approach to object matching. Foundations of computational mathematics, 11:417–487, 2011.
  27. Interleaving distance between merge trees. Discrete and Computational Geometry, 49(22-45):52, 2013.
  28. James R Munkres. Elements of algebraic topology. CRC press, 2018.
  29. Gromov-Wasserstein averaging of kernel and distance matrices. In International conference on machine learning, pages 2664–2672. PMLR, 2016.
  30. Georges Reeb. Sur les points singuliers d’une forme de pfaff completement integrable ou d’une fonction numerique [on the singular points of a completely integrable pfaff form or of a numerical function]. Comptes Rendus Acad. Sciences Paris, 222:847–849, 1946.
  31. Homology-preserving multi-scale graph skeletonization using mapper on graphs, 2023. arXiv:1804.11242.
  32. The network data repository with interactive graph analytics and visualization. In AAAI, 2015. URL: https://networkrepository.com.
  33. Vladimir Vasilievich Sharko. About Kronrod-Reeb graph of a function on a manifold. Methods of Functional Analysis and Topology, 12(04):389–396, 2006.
  34. Topological methods for the analysis of high dimensional data sets and 3d object recognition. PBG@ Eurographics, 2:091–100, 2007.
  35. Deformation transfer for triangle meshes. ACM Transactions on graphics (TOG), 23(3):399–405, 2004.
  36. Fused Gromov-Wasserstein distance for structured objects. Algorithms, 13(9):212, 2020.
  37. Point cloud classification with deep normalized Reeb graph convolution. Image and Vision Computing, 106:104092, 2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com