Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

xNeuSM: Explainable Neural Subgraph Matching with Graph Learnable Multi-hop Attention Networks (2312.01612v1)

Published 4 Dec 2023 in cs.LG and cs.AI

Abstract: Subgraph matching is a challenging problem with a wide range of applications in database systems, biochemistry, and cognitive science. It involves determining whether a given query graph is present within a larger target graph. Traditional graph-matching algorithms provide precise results but face challenges in large graph instances due to the NP-complete problem, limiting their practical applicability. In contrast, recent neural network-based approximations offer more scalable solutions, but often lack interpretable node correspondences. To address these limitations, this article presents xNeuSM: Explainable Neural Subgraph Matching which introduces Graph Learnable Multi-hop Attention Networks (GLeMA) that adaptively learns the parameters governing the attention factor decay for each node across hops rather than relying on fixed hyperparameters. We provide a theoretical analysis establishing error bounds for GLeMA's approximation of multi-hop attention as a function of the number of hops. Additionally, we prove that learning distinct attention decay factors for each node leads to a correct approximation of multi-hop attention. Empirical evaluation on real-world datasets shows that xNeuSM achieves substantial improvements in prediction accuracy of up to 34% compared to approximate baselines and, notably, at least a seven-fold faster query time than exact algorithms. The source code of our implementation is available at https://github.com/martinakaduc/xNeuSM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Duc Q. Nguyen (2 papers)
  2. Thanh Toan Nguyen (3 papers)
  3. Tho quan (14 papers)

Summary

We haven't generated a summary for this paper yet.