Papers
Topics
Authors
Recent
2000 character limit reached

Irreducible many-body correlations in topologically ordered systems

Published 18 Feb 2014 in quant-ph | (1402.4245v1)

Abstract: Topologically ordered systems exhibit large-scale correlation in their ground states, which may be characterized by quantities such as topological entanglement entropy. We propose that the concept of irreducible many-body correlation, the correlation that cannot be implied by all local correlations, may also be used as a signature of topological order. In a topologically ordered system, we demonstrate that for a part of the system with holes, the reduced density matrix exhibits irreducible many-body correlation which becomes reducible when the holes are removed. The appearance of these irreducible correlations then represents a key feature of topological phase. We analyze the many-body correlation structures in the ground state of the toric code model in an external magnetic field, and show that the topological phase transition is signaled by the irreducible many-body correlations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.