Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Looking Inside Out: Anticipating Driver Intent From Videos (2312.01444v1)

Published 3 Dec 2023 in cs.CV and cs.HC

Abstract: Anticipating driver intention is an important task when vehicles of mixed and varying levels of human/machine autonomy share roadways. Driver intention can be leveraged to improve road safety, such as warning surrounding vehicles in the event the driver is attempting a dangerous maneuver. In this work, we propose a novel method of utilizing in-cabin and external camera data to improve state-of-the-art (SOTA) performance in predicting future driver actions. Compared to existing methods, our approach explicitly extracts object and road-level features from external camera data, which we demonstrate are important features for predicting driver intention. Using our handcrafted features as inputs for both a transformer and an LSTM-based architecture, we empirically show that jointly utilizing in-cabin and external features improves performance compared to using in-cabin features alone. Furthermore, our models predict driver maneuvers more accurately and earlier than existing approaches, with an accuracy of 87.5% and an average prediction time of 4.35 seconds before the maneuver takes place. We release our model configurations and training scripts on https://github.com/ykung83/Driver-Intent-Prediction

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com