Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning with Attention Mechanism for Predicting Driver Intention at Intersection (2006.05918v1)

Published 10 Jun 2020 in cs.CV, cs.AI, cs.HC, and cs.NE

Abstract: In this paper, a driver's intention prediction near a road intersection is proposed. Our approach uses a deep bidirectional Long Short-Term Memory (LSTM) with an attention mechanism model based on a hybrid-state system (HSS) framework. As intersection is considered to be as one of the major source of road accidents, predicting a driver's intention at an intersection is very crucial. Our method uses a sequence to sequence modeling with an attention mechanism to effectively exploit temporal information out of the time-series vehicular data including velocity and yaw-rate. The model then predicts ahead of time whether the target vehicle/driver will go straight, stop, or take right or left turn. The performance of the proposed approach is evaluated on a naturalistic driving dataset and results show that our method achieves high accuracy as well as outperforms other methods. The proposed solution is promising to be applied in advanced driver assistance systems (ADAS) and as part of active safety system of autonomous vehicles.

Citations (16)

Summary

We haven't generated a summary for this paper yet.