Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EEG Signal Processing using Wavelets for Accurate Seizure Detection through Cost Sensitive Data Mining (2109.13818v1)

Published 22 Sep 2021 in eess.SP and cs.LG

Abstract: Epilepsy is one of the most common and yet diverse set of chronic neurological disorders. This excessive or synchronous neuronal activity is termed seizure. Electroencephalogram signal processing plays a significant role in detection and prediction of epileptic seizures. In this paper we introduce an approach that relies upon the properties of wavelets for seizure detection. We utilise the Maximum Overlap Discrete Wavelet Transform which enables us to reduce signal noise Then from the variance exhibited in wavelet coefficients we develop connectivity and communication efficiency between the electrodes as these properties differ significantly during a seizure period in comparison to a non-seizure period. We use basic statistical parameters derived from the reconstructed noise reduced signal, electrode connectivity and the efficiency of information transfer to build the attribute space. We have utilised data that are publicly available to test our method that is found to be significantly better than some existing approaches.

Citations (1)

Summary

We haven't generated a summary for this paper yet.