Neural networks for the approximation of Euler's elastica (2312.00644v2)
Abstract: Euler's elastica is a classical model of flexible slender structures, relevant in many industrial applications. Static equilibrium equations can be derived via a variational principle. The accurate approximation of solutions of this problem can be challenging due to nonlinearity and constraints. We here present two neural network based approaches for the simulation of this Euler's elastica. Starting from a data set of solutions of the discretised static equilibria, we train the neural networks to produce solutions for unseen boundary conditions. We present a $\textit{discrete}$ approach learning discrete solutions from the discrete data. We then consider a $\textit{continuous}$ approach using the same training data set, but learning continuous solutions to the problem. We present numerical evidence that the proposed neural networks can effectively approximate configurations of the planar Euler's elastica for a range of different boundary conditions.
- Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, (1999) Marsden and West [2001] Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta numerica 10, 357–514 (2001) [4] Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second revised edition edn. Springer, (1993) [5] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second revised edition edn. Springer, (1996) [6] Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta numerica 10, 357–514 (2001) [4] Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second revised edition edn. Springer, (1993) [5] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second revised edition edn. Springer, (1996) [6] Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second revised edition edn. Springer, (1993) [5] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second revised edition edn. Springer, (1996) [6] Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second revised edition edn. Springer, (1996) [6] Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta numerica 10, 357–514 (2001) [4] Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second revised edition edn. Springer, (1993) [5] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second revised edition edn. Springer, (1996) [6] Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second revised edition edn. Springer, (1993) [5] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second revised edition edn. Springer, (1996) [6] Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second revised edition edn. Springer, (1996) [6] Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems, Second revised edition edn. Springer, (1993) [5] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second revised edition edn. Springer, (1996) [6] Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second revised edition edn. Springer, (1996) [6] Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, Second revised edition edn. Springer, (1996) [6] Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Brenner, S.C.: The Mathematical Theory of Finite Element Methods. Springer, (2008) [7] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics vol. 37. Springer, (2006) Cuomo et al. [2022] Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing 92(3), 88 (2022) Brunton and Kutz [2023] Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Brunton, S.L., Kutz, J.N.: Machine learning for partial differential equations. arXiv:2303.17078 (2023) Raissi et al. [2019] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378, 686–707 (2019) Samaniego et al. [2020] Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362, 112790 (2020) E and Yu [2018] E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 6(1), 1–12 (2018) Gu and Ng [2023] Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Gu, Y., Ng, M.K.: Deep neural networks for solving large linear systems arising from high-dimensional problems. SIAM Journal on Scientific Computing 45(5), 2356–2381 (2023) Kadupitiya et al. [2022] Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Kadupitiya, J., Fox, G.C., Jadhao, V.: Solving Newton’s equations of motion with large timesteps using recurrent neural networks based operators. Machine Learning: Science and Technology 3(2), 025002 (2022) Liu et al. [2020] Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Liu, Y., Kutz, J., Brunton, S.: Hierarchical deep learning of multiscale differential equation time-steppers, arxiv. arXiv:2008.09768 (2020) Mattheakis et al. [2022] Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Mattheakis, M., Sondak, D., Dogra, A.S., Protopapas, P.: Hamiltonian neural networks for solving equations of motion. Physical Review E 105(6), 065305 (2022) Lu et al. [2021a] Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via deeponet based on the universal approximation theorem of operators. Nature machine intelligence 3(3), 218–229 (2021) Lu et al. [2021b] Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: Deepxde: A deep learning library for solving differential equations. SIAM review 63(1), 208–228 (2021) Chevalier et al. [2022] Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Chevalier, S., Stiasny, J., Chatzivasileiadis, S.: Accelerating dynamical system simulations with contracting and physics-projected neural-newton solvers. In: Learning for Dynamics and Control Conference, PMLR, pp. 803–816 (2022) Li et al. [2022] Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Li, Y., Zhou, Z., Ying, S.: Delisa: Deep learning based iteration scheme approximation for solving pdes. Journal of Computational Physics 451, 110884 (2022) Schiassi et al. [2021] Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Schiassi, E., Furfaro, R., Leake, C., De Florio, M., Johnston, H., Mortari, D.: Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 457, 334–356 (2021) De Florio et al. [2022] De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- De Florio, M., Schiassi, E., Furfaro, R.: Physics-informed neural networks and functional interpolation for stiff chemical kinetics. Chaos: An Interdisciplinary Journal of Nonlinear Science 32(6) (2022) Fabiani et al. [2023] Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Fabiani, G., Galaris, E., Russo, L., Siettos, C.: Parsimonious physics-informed random projection neural networks for initial value problems of ODEs and index-1 DAEs. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(4) (2023) Mortari et al. [2019] Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Mortari, D., Johnston, H., Smith, L.: High accuracy least-squares solutions of nonlinear differential equations. Journal of computational and applied mathematics 352, 293–307 (2019) [25] Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Kollmannsberger, S., D’Angella, D., Jokeit, M., Herrmann, L.: Deep Learning in Computational Mechanics. Springer, (2021) [26] Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Yagawa, G., Oishi, A.: Computational Mechanics with Deep Learning: An Introduction. Springer, (2022) Loc Vu-Quoc [2023] Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Loc Vu-Quoc, A.H.: Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics. Computer Modeling in Engineering & Sciences 137(2), 1069–1343 (2023) Lagaris et al. [1998] Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks 9(5), 987–1000 (1998) Ntarladima et al. [2023] Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Ntarladima, K., Pieber, M., Gerstmayr, J.: A model for contact and friction between beams under large deformation and sheaves. Nonlinear Dynamics, 1–18 (2023) Stavole et al. [2022] Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Stavole, M., Almagro, R.T.S.M., Lohk, M., Leyendecker, S.: Homogenization of the constitutive properties of composite beam cross-sections. In: ECCOMAS Congress 2022-8th European Congress on Computational Methods in Applied Sciences and Engineering (2022) Manfredo et al. [2023] Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Manfredo, D., Dörlich, V., Linn, J., Arnold, M.: Data based constitutive modelling of rate independent inelastic effects in composite cables using preisach hysteresis operators. Multibody System Dynamics, 1–16 (2023) Saadat and Durville [2023] Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Saadat, M.A., Durville, D.: A mixed stress-strain driven computational homogenization of spiral strands. Computers & Structures 279, 106981 (2023) Euler [1744] Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Euler, L.: De Curvis Elastici. Additamentum in Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti, Lausanne (1744) Love [1863 - 1940] Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1863 - 1940) Matsutani [2010] Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Matsutani, S.: Euler’s elastica and beyond. Journal of Geometry and Symmetry in Physics 17, 45–86 (2010) Singer [2008] Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Singer, D.A.: Lectures on elastic curves and rods. In: AIP Conference Proceedings, vol. 1002. American Institute of Physics, pp. 3–32 (2008) Rohrhofer et al. [2022] Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Rohrhofer, F.M., Posch, S., Gößnitzer, C., Geiger, B.C.: On the role of fixed points of dynamical systems in training physics-informed neural networks. Transactions on Machine Learning Research (2022) Colombo et al. [2016] Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Colombo, L., Ferraro, S., Diego, D.: Geometric integrators for higher-order variational systems and their application to optimal control. Journal of Nonlinear Science 26, 1615–1650 (2016) Ferraro et al. [2021] Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Ferraro, S.J., Diego, D.M., Almagro, R.T.S.M.: Parallel iterative methods for variational integration applied to navigation problems. IFAC-PapersOnLine 54(19), 321–326 (2021) [40] Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill Book Company, (1961) [41] Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, (2012) Virtanen et al. [2020] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17, 261–272 (2020) Higham and Higham [2019] Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Higham, C.F., Higham, D.J.: Deep learning: An introduction for applied mathematicians. Siam review 61(4), 860–891 (2019) Kingma and Ba [2015] Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR), San Diega, CA, USA (2015) Paszke et al. [2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems 32 (2019) Akiba et al. [2019] Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2623–2631 (2019) Wang et al. [2021] Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021) Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)
- Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing 43(5), 3055–3081 (2021)