Edge modes, extended TQFT, and measurement based quantum computation (2312.00605v3)
Abstract: Quantum teleportation can be used to define a notion of parallel transport which characterizes the entanglement structure of a quantum state \cite{Czech:2018kvg}. This suggests one can formulate a gauge theory of entanglement. In \cite{Wong:2022mnv}, it was explained that measurement based quantum computation in one dimension can be understood in term of such a gauge theory (MBQC). In this work, we give an alternative formulation of this "entanglement gauge theory" as an extended topological field theory. This formulation gives a alternative perspective on the relation between the circuit model and MBQC. In addition, it provides an interpretation of MBQC in terms of the extended Hilbert space construction in gauge theories, in which the entanglement edge modes play the role of the logical qubit.
- B. Czech, L. Lamprou, and L. Susskind, “Entanglement Holonomies,” arXiv:1807.04276 [hep-th].
- G. Wong, R. Raussendorf, and B. Czech, “The Gauge Theory of Measurement-Based Quantum Computation,” arXiv:2207.10098 [hep-th].
- H. Casini, M. Huerta, R. C. Myers, and A. Yale, “Mutual information and the F-theorem,” JHEP 10 (2015) 003, arXiv:1506.06195 [hep-th].
- W. Donnelly, “Entanglement entropy and nonabelian gauge symmetry,” Class. Quant. Grav. 31 no. 21, (2014) 214003, arXiv:1406.7304 [hep-th].
- W. Donnelly, “Decomposition of entanglement entropy in lattice gauge theory,” Phys.Rev. D85 (2012) 085004, arXiv:1109.0036 [hep-th].
- W. Donnelly and A. C. Wall, “Entanglement entropy of electromagnetic edge modes,” Phys. Rev. Lett. 114 no. 11, (2015) 111603, arXiv:1412.1895 [hep-th].
- W. Donnelly and A. C. Wall, “Geometric entropy and edge modes of the electromagnetic field,” arXiv:1506.05792 [hep-th].
- G. Wong, “A note on the bulk interpretation of the Quantum Extremal Surface formula,” arXiv:2212.03193 [hep-th].
- T. G. Mertens, J. Simón, and G. Wong, “A proposal for 3d quantum gravity and its bulk factorization,” JHEP 06 (2023) 134, arXiv:2210.14196 [hep-th].
- M. S. Klinger and R. G. Leigh, “Crossed products, extended phase spaces and the resolution of entanglement singularities,” 2023.
- K. Van Acoleyen, N. Bultinck, J. Haegeman, M. Marien, V. B. Scholz, and F. Verstraete, “The entanglement of distillation for gauge theories,” Phys. Rev. Lett. 117 no. 13, (2016) 131602, arXiv:1511.04369 [quant-ph].
- R. Raussendorf and H. Briegel, “Computational model underlying the one-way quantum computer,” Quant. Inf. Comput. 2 no. 6, (2002) 443–486.
- D. T. Stephen, D.-S. Wang, A. Prakash, T.-C. Wei, and R. Raussendorf, “Computational Power of Symmetry-Protected Topological Phases,” Phys. Rev. Lett. 119 no. 1, (2017) 010504, arXiv:1611.08053 [quant-ph].
- G. W. Moore and G. Segal, “D-branes and K-theory in 2D topological field theory,” arXiv:hep-th/0609042.
- K. Shiozaki and S. Ryu, “Matrix product states and equivariant topological field theories for bosonic symmetry-protected topological phases in (1+1) dimensions,” JHEP 04 (2017) 100, arXiv:1607.06504 [cond-mat.str-el].
- W. Donnelly and G. Wong, “Entanglement branes, modular flow, and extended topological quantum field theory,” JHEP 10 (2019) 016, arXiv:1811.10785 [hep-th].
- A. Kapustin, “Topological Field Theory, Higher Categories, and Their Applications,” in International Congress of Mathematicians. 4, 2010. arXiv:1004.2307 [math.QA].
- D. V. Else, I. Schwarz, S. D. Bartlett, and A. C. Doherty, “Symmetry-protected phases for measurement-based quantum computation,” Physical Review Letters 108 no. 24, (June, 2012) . http://dx.doi.org/10.1103/PhysRevLett.108.240505.
- C. Cheng, “A character theory for projective representations of finite groups,” Linear Algebra and its applications 469 (2015) 230–242.
- D. Gross, J. Eisert, N. Schuch, and D. Perez-Garcia, “Measurement-based quantum computation beyond the one-way model,” Phys. Rev. A 76 (Nov, 2007) 052315. https://link.aps.org/doi/10.1103/PhysRevA.76.052315.
- C. Rovelli, “Why gauge?,” Foundations of Physics 44 no. 1, (Jan., 2014) 91–104. http://dx.doi.org/10.1007/s10701-013-9768-7.
- M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen, and B. Synak-Radtke, “Local versus nonlocal information in quantum-information theory: Formalism and phenomena,” Physical Review A 71 no. 6, (June, 2005) . http://dx.doi.org/10.1103/PhysRevA.71.062307.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.