Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Segment Anything Model-guided Collaborative Learning Network for Scribble-supervised Polyp Segmentation (2312.00312v1)

Published 1 Dec 2023 in cs.CV

Abstract: Polyp segmentation plays a vital role in accurately locating polyps at an early stage, which holds significant clinical importance for the prevention of colorectal cancer. Various polyp segmentation methods have been developed using fully-supervised deep learning techniques. However, pixel-wise annotation for polyp images by physicians during the diagnosis is both time-consuming and expensive. Moreover, visual foundation models such as the Segment Anything Model (SAM) have shown remarkable performance. Nevertheless, directly applying SAM to medical segmentation may not produce satisfactory results due to the inherent absence of medical knowledge. In this paper, we propose a novel SAM-guided Collaborative Learning Network (SAM-CLNet) for scribble-supervised polyp segmentation, enabling a collaborative learning process between our segmentation network and SAM to boost the model performance. Specifically, we first propose a Cross-level Enhancement and Aggregation Network (CEA-Net) for weakly-supervised polyp segmentation. Within CEA-Net, we propose a Cross-level Enhancement Module (CEM) that integrates the adjacent features to enhance the representation capabilities of different resolution features. Additionally, a Feature Aggregation Module (FAM) is employed to capture richer features across multiple levels. Moreover, we present a box-augmentation strategy that combines the segmentation maps generated by CEA-Net with scribble annotations to create more precise prompts. These prompts are then fed into SAM, generating segmentation SAM-guided masks, which can provide additional supervision to train CEA-Net effectively. Furthermore, we present an Image-level Filtering Mechanism to filter out unreliable SAM-guided masks. Extensive experimental results show that our SAM-CLNet outperforms state-of-the-art weakly-supervised segmentation methods.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. M. M. Center, A. Jemal, R. A. Smith, and E. Ward, “Worldwide variations in colorectal cancer,” CA: A Cancer Journal for Clinicians, vol. 59, no. 6, pp. 366–378, 2009.
  2. D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, “Pranet: Parallel reverse attention network for polyp segmentation,” in International Conference on Medical Image Computing and Computer Assisted Intervention.   Springer, 2020, pp. 263–273.
  3. X. Zhao, L. Zhang, and H. Lu, “Automatic polyp segmentation via multi-scale subtraction network,” in Medical Image Computing and Computer Assisted Intervention.   Springer, 2021, pp. 120–130.
  4. Y. Zhang, H. Liu, and Q. Hu, “Transfuse: Fusing transformers and cnns for medical image segmentation,” in International Conference on Medical Image Computing and Computer Assisted Intervention.   Springer, 2021, pp. 14–24.
  5. D. Bo, W. Wenhai, F. Deng-Ping, L. Jinpeng, F. Huazhu, and S. Ling, “Polyp-pvt: Polyp segmentation with pyramidvision transformers,” 2023.
  6. G. Ren, M. Lazarou, J. Yuan, and T. Stathaki, “Towards automated polyp segmentation using weakly-and semi-supervised learning and deformable transformers,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 4354–4363.
  7. J. Dong, Y. Cong, G. Sun, and D. Hou, “Semantic-transferable weakly-supervised endoscopic lesions segmentation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 10 712–10 721.
  8. M. Zhu, Z. Chen, and Y. Yuan, “FedDM: Federated weakly supervised segmentation via annotation calibration and gradient de-conflicting,” IEEE Transactions on Medical Imaging, 2023.
  9. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical Image Computing and Computer Assisted Intervention, 2015, pp. 234–241.
  10. Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: Redesigning skip connections to exploit multiscale features in image segmentation,” IEEE Transactions on Medical Imaging, vol. 39, no. 6, pp. 1856–1867, 2019.
  11. D. Jha, P. H. Smedsrud, D. Johansen, T. de Lange, H. D. Johansen, P. Halvorsen, and M. A. Riegler, “A comprehensive study on colorectal polyp segmentation with resunet++, conditional random field and test-time augmentation,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 6, pp. 2029–2040, 2021.
  12. R. Zhang, G. Li, Z. Li, S. Cui, D. Qian, and Y. Yu, “Adaptive context selection for polyp segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2020, pp. 253–262.
  13. T.-C. Nguyen, T.-P. Nguyen, G.-H. Diep, A.-H. Tran-Dinh, T. V. Nguyen, and M.-T. Tran, “CCBANet: cascading context and balancing attention for polyp segmentation,” in Medical Image Computing and Computer Assisted Intervention.   Springer, 2021, pp. 633–643.
  14. T. Zhou, Y. Zhou, K. He, C. Gong, J. Yang, H. Fu, and D. Shen, “Cross-level feature aggregation network for polyp segmentation,” Pattern Recognition, vol. 140, p. 109555, 2023.
  15. Y. Fang, C. Chen, Y. Yuan, and K.-y. Tong, “Selective feature aggregation network with area-boundary constraints for polyp segmentation,” in International Conference on Medical Image Computing and Computer Assisted Intervention.   Springer, 2019, pp. 302–310.
  16. H. Wu, Z. Zhao, and Z. Wang, “META-Unet: Multi-scale efficient transformer attention unet for fast and high-accuracy polyp segmentation,” IEEE Transactions on Automation Science and Engineering, 2023.
  17. P. Song, J. Li, and H. Fan, “Attention based multi-scale parallel network for polyp segmentation,” Computers in Biology and Medicine, vol. 146, p. 105476, 2022.
  18. W. Zhang, C. Fu, Y. Zheng, F. Zhang, Y. Zhao, and C.-W. Sham, “HSNet: A hybrid semantic network for polyp segmentation,” Computers in Biology and Medicine, vol. 150, p. 106173, 2022.
  19. G.-P. Ji, G. Xiao, Y.-C. Chou, D.-P. Fan, K. Zhao, G. Chen, and L. Van Gool, “Video polyp segmentation: A deep learning perspective,” Machine Intelligence Research, vol. 19, no. 6, pp. 531–549, 2022.
  20. Y. Jiang, Z. Zhang, R. Zhang, G. Li, S. Cui, and Z. Li, “Yona: You only need one adjacent reference-frame for accurate and fast video polyp detection,” arXiv preprint arXiv:2306.03686, 2023.
  21. K. Wu, B. Du, M. Luo, H. Wen, Y. Shen, and J. Feng, “Weakly supervised brain lesion segmentation via attentional representation learning,” in Medical Image Computing and Computer Assisted Intervention.   Springer, 2019, pp. 211–219.
  22. Z. Chen, Z. Tian, J. Zhu, C. Li, and S. Du, “C-cam: Causal cam for weakly supervised semantic segmentation on medical image,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11 676–11 685.
  23. S. Yu, B. Zhang, J. Xiao, and E. G. Lim, “Structure-consistent weakly supervised salient object detection with local saliency coherence,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, 2021, pp. 3234–3242.
  24. X. Liu, Q. Yuan, Y. Gao, K. He, S. Wang, X. Tang, J. Tang, and D. Shen, “Weakly supervised segmentation of covid19 infection with scribble annotation on ct images,” Pattern Recognition, vol. 122, p. 108341, 2022.
  25. H. R. Roth, D. Yang, Z. Xu, X. Wang, and D. Xu, “Going to extremes: weakly supervised medical image segmentation,” Machine Learning and Knowledge Extraction, vol. 3, no. 2, pp. 507–524, 2021.
  26. H. Kervadec, J. Dolz, S. Wang, E. Granger, and I. B. Ayed, “Bounding boxes for weakly supervised segmentation: Global constraints get close to full supervision,” in Medical Imaging with Deep Learning.   PMLR, 2020, pp. 365–381.
  27. J. Wei, Y. Hu, S. Cui, S. K. Zhou, and Z. Li, “Weakpolyp: You only look bounding box for polyp segmentation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention.   Springer, 2023, pp. 757–766.
  28. A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,” arXiv preprint arXiv:2304.02643, 2023.
  29. T. Chen, L. Zhu, C. Ding, R. Cao, S. Zhang, Y. Wang, Z. Li, L. Sun, P. Mao, and Y. Zang, “SAM fails to segment anything?–SAM-adapter: Adapting SAM in underperformed scenes: Camouflage, shadow, and more,” arXiv preprint arXiv:2304.09148, 2023.
  30. Y. Zhang, T. Zhou, S. Wang, Y. Wu, P. Gu, and D. Z. Chen, “SamDSK: Combining segment anything model with domain-specific knowledge for semi-supervised learning in medical image segmentation,” arXiv preprint arXiv:2308.13759, 2023.
  31. R. Biswas, “Polyp-SAM++: Can a text guided SAM perform better for polyp segmentation?” arXiv preprint arXiv:2308.06623, 2023.
  32. P.-T. Jiang and Y. Yang, “Segment anything is a good pseudo-label generator for weakly supervised semantic segmentation,” arXiv preprint arXiv:2305.01275, 2023.
  33. W. Sun, Z. Liu, Y. Zhang, Y. Zhong, and N. Barnes, “An alternative to WSSS? an empirical study of the segment anything model (SAM) on weakly-supervised semantic segmentation problems,” arXiv preprint arXiv:2305.01586, 2023.
  34. Z. Chen and Q. Sun, “Weakly-supervised semantic segmentation with image-level labels: from traditional models to foundation models,” arXiv preprint arXiv:2310.13026, 2023.
  35. C. He, K. Li, Y. Zhang, G. Xu, L. Tang, Y. Zhang, Z. Guo, and X. Li, “Weakly-supervised concealed object segmentation with SAM-based pseudo labeling and multi-scale feature grouping,” arXiv preprint arXiv:2305.11003, 2023.
  36. T. Chen, Z. Mai, R. Li, and W.-l. Chao, “Segment anything model (sam) enhanced pseudo labels for weakly supervised semantic segmentation,” arXiv preprint arXiv:2305.05803, 2023.
  37. S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. Torr, “Res2net: A new multi-scale backbone architecture,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 2, pp. 652–662, 2019.
  38. Y. Pang, X. Zhao, L. Zhang, and H. Lu, “Multi-scale interactive network for salient object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9413–9422.
  39. K. Patel, A. M. Bur, and G. Wang, “Enhanced u-net: A feature enhancement network for polyp segmentation,” in Conference on Robots and Vision.   IEEE, 2021, pp. 181–188.
  40. C.-H. Huang, H.-Y. Wu, and Y.-L. Lin, “Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps,” arXiv preprint arXiv:2101.07172, 2021.
  41. Z. Yin, K. Liang, Z. Ma, and J. Guo, “Duplex contextual relation network for polyp segmentation,” in IEEE International Symposium on Biomedical Imaging.   IEEE, 2022, pp. 1–5.
  42. Y. Sun, G. Chen, T. Zhou, Y. Zhang, and N. Liu, “Context-aware cross-level fusion network for camouflaged object detection,” arXiv preprint arXiv:2105.12555, 2021.
  43. J. Zhang, X. Yu, A. Li, P. Song, B. Liu, and Y. Dai, “Weakly-supervised salient object detection via scribble annotations,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 12 546–12 555.
  44. R. He, Q. Dong, J. Lin, and R. W. Lau, “Weakly-supervised camouflaged object detection with scribble annotations,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 1, 2023, pp. 781–789.
  45. Z. Huang, T.-Z. Xiang, H.-X. Chen, and H. Dai, “Scribble-based boundary-aware network for weakly supervised salient object detection in remote sensing images,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 191, pp. 290–301, 2022.
  46. T. Zhou, Y. Zhang, Y. Zhou, Y. Wu, and C. Gong, “Can sam segment polyps?” arXiv preprint arXiv:2304.07583, 2023.
  47. Y. Li, M. Hu, and X. Yang, “Polyp-sam: Transfer sam for polyp segmentation,” arXiv preprint arXiv:2305.00293, 2023.
  48. J. Wei, S. Wang, and Q. Huang, “F33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTNet: fusion, feedback and focus for salient object detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 12 321–12 328.
  49. J. Wei, Y. Hu, R. Zhang, Z. Li, S. K. Zhou, and S. Cui, “Shallow attention network for polyp segmentation,” in Medical Image Computing and Computer Assisted Intervention.   Springer, 2021, pp. 699–708.
  50. J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilariño, “Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians,” Computerized Medical Imaging and Graphics, vol. 43, pp. 99–111, 2015.
  51. D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, and H. D. Johansen, “Kvasir-seg: A segmented polyp dataset,” in MultiMedia Modeling.   Springer, 2020, pp. 451–462.
  52. J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer,” International Journal of Computer Assisted Radiology and Surgery, vol. 9, pp. 283–293, 2014.
  53. D. Vázquez, J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, A. M. López, A. Romero, M. Drozdzal, A. Courville et al., “A benchmark for endoluminal scene segmentation of colonoscopy images,” Journal of Healthcare Engineering, vol. 2017, 2017.
  54. N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated polyp detection in colonoscopy videos using shape and context information,” IEEE Transactions on Medical Imaging, vol. 35, no. 2, pp. 630–644, 2015.
  55. T. Zhou, H. Fu, G. Chen, Y. Zhou, D.-P. Fan, and L. Shao, “Specificity-preserving RGB-D saliency detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 4681–4691.
  56. D.-P. Fan, G.-P. Ji, M.-M. Cheng, and L. Shao, “Concealed object detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6024–6042, 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Yiming Zhao (50 papers)
  2. Tao Zhou (398 papers)
  3. Yunqi Gu (5 papers)
  4. Yi Zhou (438 papers)
  5. Yizhe Zhang (127 papers)
  6. Ye Wu (39 papers)
  7. Huazhu Fu (185 papers)
Citations (1)