Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Linear response theory for spin alignment of vector mesons in thermal media (2311.18400v2)

Published 30 Nov 2023 in hep-ph, hep-th, and nucl-th

Abstract: We present a calculation of the spin alignment for unflavored vector mesons in thermalized quark-gluon plasma based on the Kubo formula in linear response theory. This is achieved by expanding the system to the first order of the coupling constant and the spatial gradient. The effect strongly relies on the vector meson's spectral functions which are determined by the interaction and medium properties. The spectral functions are calculated for the one-quark-loop self-energy with meson-quark interaction. The numerical results show that the correction to the spin alignment from the thermal shear tensor is of the order $10{-4}\sim10{-5}$ for the chosen values of quark-meson coupling constant, if the magnitude of thermal shear tensor is $10{-2}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. S. Barnett, Rev. Mod. Phys. 7, 129 (1935).
  2. A. Einstein and W. de Haas, Deutsche Physikalische Gesellschaft, Verhandlungen 17, 152 (1915).
  3. Phys. Rev. Lett. 94, 102301 (2005), nucl-th/0410079, [Erratum: Phys.Rev.Lett. 96, 039901 (2006)].
  4. S. A. Voloshin, (2004), nucl-th/0410089.
  5. Phys. Rev. C76, 044901 (2007), 0708.0035.
  6. Phys. Rev. C77, 024906 (2008), 0711.1253.
  7. J.-H. Gao et al., Phys. Rev. C77, 044902 (2008), 0710.2943.
  8. STAR, L. Adamczyk et al., Nature 548, 62 (2017), 1701.06657.
  9. STAR, J. Adam et al., Phys. Rev. C 98, 014910 (2018), 1805.04400.
  10. Q. Wang, Nucl. Phys. A967, 225 (2017), 1704.04022.
  11. Prog. Part. Nucl. Phys. 108, 103709 (2019), 1811.04409.
  12. F. Becattini and M. A. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020), 2003.03640.
  13. Lect. Notes Phys. 987, 195 (2021), 2009.04803.
  14. (2020), 2010.08937.
  15. Acta Phys. Sin. (in Chinese) 72, 072501 (2023).
  16. Phys. Lett. B 629, 20 (2005), nucl-th/0411101.
  17. STAR, B. I. Abelev et al., Phys. Rev. C 77, 061902 (2008), 0801.1729.
  18. STAR, M. S. Abdallah et al., Nature 614, 244 (2023), 2204.02302.
  19. Phys. Rev. C 97, 034917 (2018), 1711.06008.
  20. Phys. Lett. B 817, 136325 (2021), 2010.01474.
  21. J.-H. Gao, Phys. Rev. D 104, 076016 (2021), 2105.08293.
  22. B. Müller and D.-L. Yang, Phys. Rev. D 105, L011901 (2022), 2110.15630.
  23. Phys. Rev. D 108, 016020 (2023), 2304.04181.
  24. Phys. Rev. D 101, 096005 (2020), 1910.13684, [Erratum: Phys.Rev.D 105, 099903 (2022)].
  25. Phys. Rev. D 102, 056013 (2020), 2007.05106.
  26. Phys. Rev. Lett. 131, 042304 (2023), 2205.15689.
  27. (2022), 2206.05868.
  28. Phys. Rept. 118, 1 (1985).
  29. J.-P. Blaizot and E. Iancu, Phys. Rept. 359, 355 (2002), hep-ph/0101103.
  30. J. Berges, AIP Conf. Proc. 739, 3 (2004), hep-ph/0409233.
  31. W. Cassing, Eur. Phys. J. ST 168, 3 (2009), 0808.0715.
  32. U. W. Heinz, Phys. Rev. Lett. 51, 351 (1983).
  33. Annals Phys. 173, 462 (1987).
  34. P. Zhuang and U. W. Heinz, Annals Phys. 245, 311 (1996), nucl-th/9502034.
  35. Phys. Rev. C 94, 024904 (2016), 1604.04036.
  36. Phys. Rev. D 100, 056021 (2019), 1902.06510.
  37. Phys. Rev. D 100, 056018 (2019), 1902.06513.
  38. Phys. Rev. Lett. 127, 052301 (2021), 2005.01506.
  39. Phys. Rev. D 104, 016022 (2021), 2103.04896.
  40. Annals Phys. 338, 32 (2013), 1303.3431.
  41. Phys. Rev. D 104, 016029 (2021), 2103.10636.
  42. (2023), 2308.14038.
  43. Sci. Bull. 68, 874 (2023), 2305.09114.
  44. X.-N. Wang, Nucl. Sci. Tech. 34, 15 (2023), 2302.00701.
  45. Acta Phys. Sin. (in Chinese) 72, 072502 (2023).
  46. F. Li and S. Y. F. Liu, (2022), 2206.11890.
  47. Phys. Rev. Res. 5, 013187 (2023), 2207.01111.
  48. Phys. Rev. C 104, 064901 (2021), 2106.00238.
  49. Phys. Lett. B 820, 136519 (2021), 2103.10917.
  50. Phys. Rev. Lett. 127, 142301 (2021), 2103.10403.
  51. STAR, T. Niida, Nucl. Phys. A 982, 511 (2019), 1808.10482.
  52. Phys. Rev. Lett. 127, 272302 (2021), 2103.14621.
  53. Statistical Mechanics of Nonequilibrium Processes, Basic Concepts, Kinetic TheoryStatistical Mechanics of Nonequilibrium Processes (Wiley, 1996).
  54. Statistical Mechanics of Nonequilibrium Processes, Statistical Mechanics of Nonequilibrium Processes. Volume 2: Relaxation and Hydrodynamic ProcessesStatistical Mechanics of Nonequilibrium Processes (Wiley, 1997).
  55. Theoretical and Mathematical Physics 40, 821 (1979).
  56. J. I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applicationsCambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
  57. A. Manohar and H. Georgi, Nucl. Phys. B 234, 189 (1984).
  58. J. Phys. G 19, 2013 (1993).
  59. Phys. Rev. D 92, 045022 (2015), 1506.01868.
  60. Phys. Rev. D 95, 103008 (2017), 1612.06167.
  61. Phys. Rev. Lett. 88, 132303 (2002), nucl-th/0111040.
  62. JHEP 09, 095 (2017), 1511.03646.
  63. H. A. Weldon, Phys. Rev. D 26, 1394 (1982).
  64. R. D. Pisarski, Phys. Rev. Lett. 63, 1129 (1989).
  65. E. Braaten and R. D. Pisarski, Nucl. Phys. B 337, 569 (1990).
  66. M. H. Thoma, (2000), hep-ph/0010164.
  67. M. L. Bellac, Thermal Field TheoryCambridge Monographs on Mathematical Physics (Cambridge University Press, 2011).
  68. C. Gale and J. I. Kapusta, Nucl. Phys. B 357, 65 (1991).
  69. J. I. Kapusta and C. Gale, Finite-Temperature Field TheoryCambridge Monographs on Mathematical Physics (Cambridge University Press, 2023).
  70. Prog. Part. Nucl. Phys. 127, 103989 (2022), 2201.07644.
  71. L. Kadanoff and G. Baym, Quantum Statistical Mechanics: Green’s Function Methods in Equilibrium and Nonequilibrium ProblemsFrontiers in Physics. A Lecture Note and Reprint Series (W.A. Benjamin, 1962).
  72. A. Fetter and J. Walecka, Quantum Theory of Many-particle SystemsDover Books on Physics (Dover Publications, 2003).
  73. F. Becattini et al., (2024), 2402.04540.
  74. (2023), 2306.05936.
  75. Y.-Z. Xu et al., Phys. Rev. D 100, 114038 (2019), 1911.05199.
  76. Y.-Z. Xu et al., Eur. Phys. J. C 81, 895 (2021), 2107.03488.
  77. Annals Phys. 154, 229 (1984).
  78. Particles 2, 197 (2019), 1902.01089.
  79. A. Andronic et al., Nucl. Phys. A 837, 65 (2010), 0911.4806.
  80. Nature 561, 321 (2018), 1710.09425.
  81. H. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020), 1911.08737.
  82. Phys. Rev. D 105, 114053 (2022), 2204.11440.
  83. Phys. Rev. D 107, 074033 (2023), 2211.16949.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube