Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Lyapunov conditions for k-contraction: analysis and feedback design (2311.18388v2)

Published 30 Nov 2023 in eess.SY, cs.SY, and math.DS

Abstract: Recently, the concept of k-contraction has been introduced as a promising generalization of contraction for dynamical systems. However, the study of k-contraction properties has faced significant challenges due to the reliance on complex mathematical objects called matrix compounds. As a result, related control design methodologies have yet to appear in the literature. In this paper, we overcome existing limitations and propose new sufficient conditions for k-contraction which do not require matrix compounds computation. Notably, these conditions are also necessary in the linear time-invariant framework. Leveraging on these findings, we propose a feedback design methodology for both the linear and the nonlinear scenarios which can be used to enforce k-contractivity properties on the closed-loop dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. R. G. Sanfelice and L. Praly, “Convergence of Nonlinear Observers on ℝnsuperscriptℝ𝑛{\mathbb{R}}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT With a Riemannian Metric (Part I),” IEEE Transactions on Automatic Control, vol. 57, no. 7, pp. 1709–1722, 2012.
  2. G. Russo and M. di Bernardo, “Solving the rendezvous problem for multi-agent systems using contraction theory,” in 48h IEEE Conference on Decision and Control, 2009, pp. 5821–5826.
  3. Z. Aminzare and E. D. Sontag, “Synchronization of diffusively-connected nonlinear systems: Results based on contractions with respect to general norms,” IEEE Transactions on Network Science and Engineering, vol. 1, no. 2, pp. 91–106, 2014.
  4. M. Giaccagli, S. Zoboli, D. Astolfi, V. Andrieu, and G. Casadei, “Synchronization in Networks of Nonlinear Systems: Contraction Analysis via Riemannian Metrics and Deep-Learning for Feedback Estimation,” under review on IEEE Transactions on Automatic Control. Preprint: hal-03801100, 2023.
  5. I. R. Manchester and J.-J. E. Slotine, “Control contraction metrics: Convex and intrinsic criteria for nonlinear feedback design,” IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 3046–3053, 2017.
  6. M. Giaccagli, V. Andrieu, S. Tarbouriech, and D. Astolfi, “Infinite gain margin, contraction and optimality: An LMI-based design,” European Journal of Control, vol. 68, p. 100685, 2022.
  7. M. Giaccagli, D. Astolfi, V. Andrieu, and L. Marconi, “Sufficient conditions for global integral action via incremental forwarding for input-affine nonlinear systems,” IEEE Transactions on Automatic Control, vol. 67, no. 12, pp. 6537–6551, 2022.
  8. M. Giaccagli, V. Andrieu, S. Tarbouriech, and D. Astolfi, “LMI conditions for contraction, integral action and output feedback stabilization for a class of nonlinear systems,” Automatica, 2023.
  9. S. Zoboli, S. Janny, and M. Giaccagli, “Deep learning-based output tracking via regulation and contraction theory,” in 22nd IFAC World Congress, 2023.
  10. F. Forni and R. Sepulchre, “A differential Lyapunov framework for contraction analysis,” IEEE Transactions on Automatic Control, vol. 59, no. 3, pp. 614–628, 2014.
  11. V. Andrieu, B. Jayawardhana, and L. Praly, “Characterizations of global transversal exponential stability,” IEEE Transactions on Automatic Control, vol. 66, no. 8, pp. 3682–3694, 2020.
  12. F. Forni and R. Sepulchre, “A dissipativity theorem for p𝑝pitalic_p-dominant systems,” in IEEE 56th Conference on Decision and Control, 2017, pp. 3467–3472.
  13. ——, “Differential dissipativity theory for dominance analysis,” IEEE Transactions on Automatic Control, vol. 64, no. 6, pp. 2340–2351, 2019.
  14. J. Muldowney, “Compound matrices and ordinary differential equations,” Rocky Mountain Journal of Mathematics, vol. 20, no. 4, pp. 857–872, 1990.
  15. C. Wu, I. Kanevskiy, and M. Margaliot, “k𝑘kitalic_k-contraction: Theory and applications,” Automatica, vol. 136, p. 110048, 2022.
  16. R. Ofir, M. Margaliot, Y. Levron, and J.-J. Slotine, “A sufficient condition for k𝑘kitalic_k-contraction of the series connection of two systems,” IEEE Transactions on Automatic Control, vol. 67, no. 9, pp. 4994–5001, 2022.
  17. R. A. Smith, “Massera’s convergence theorem for periodic nonlinear differential equations,” Journal of Mathematical Analysis and Applications, vol. 120, no. 2, pp. 679–708, 1986.
  18. L. A. Sanchez, “Cones of rank 2 and the Poincaré–Bendixson property for a new class of monotone systems,” Journal of Differential Equations, vol. 246, no. 5, pp. 1978–1990, 2009.
  19. C. Wu and D. V. Dimarogonas, “From partial and horizontal contraction to k-contraction,” IEEE Transactions on Automatic Control, pp. 1–8, 2023.
  20. R. A. Smith, “The Poincaré–Bendixson theorem for certain differential equations of higher order,” Proceedings of the Royal Society of Edinburgh Section A: Mathematics, vol. 83, no. 1-2, pp. 63–79, 1979.
  21. T. Stykel, “Stability and inertia theorems for generalized Lyapunov equations,” Linear Algebra and its Applications, vol. 355, no. 1-3, pp. 297–314, 2002.
  22. H. K. Wimmer, “On the algebraic Riccati equation,” Bulletin of the Australian Mathematical Society, vol. 14, no. 3, p. 457–461, 1976.
  23. V. Andrieu, B. Jayawardhana, and L. Praly, “Transverse exponential stability and applications,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3396–3411, 2016.
  24. W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.
  25. E. Bar-Shalom, O. Dalin, and M. Margaliot, “Compound matrices in systems and control theory: a tutorial,” Mathematics of Control, Signals, and Systems, pp. 1–55, 2023.
  26. D. Angeli, M. A. Al-Radhawi, and E. D. Sontag, “A robust Lyapunov criterion for nonoscillatory behaviors in biological interaction networks,” IEEE Transactions on Automatic Control, vol. 67, no. 7, pp. 3305–3320, 2022.
  27. S. Zoboli, A. Cecilia, U. Serres, D. Astolfi, and V. Andrieu, “LMI conditions for k𝑘kitalic_k-contraction analysis: a step towards design,” in 62nd IEEE Conference on Decision and Control, 2023.
  28. F. Bullo, “Contraction theory for dynamical systems,” Kindle Direct Publishing, vol. 1, 2022.
  29. A. Davydov, S. Jafarpour, and F. Bullo, “Non-Euclidean contraction theory for robust nonlinear stability,” IEEE Transactions on Automatic Control, vol. 67, no. 12, pp. 6667–6681, 2022.
  30. J. W. Simpson-Porco and F. Bullo, “Contraction theory on Riemannian manifolds,” Systems & Control Letters, vol. 65, pp. 74–80, 2014.
  31. O. Dalin, R. Ofir, E. B. Shalom, A. Ovseevich, F. Bullo, and M. Margaliot, “Verifying k-contraction without computing k-compounds,” IEEE Transactions on Automatic Control, pp. 1–15, 2023.
  32. G. O. Berger and R. M. Jungers, “p𝑝pitalic_p-dominant switched linear systems,” Automatica, vol. 132, p. 109801, 2021.
  33. Constructive nonlinear control.   Springer Science & Business Media, 2012.
  34. V. Andrieu and S. Tarbouriech, “LMI conditions for contraction and synchronization,” IFAC-PapersOnLine, vol. 52, no. 16, pp. 616–621, 2019.
  35. Y. Sato, Y. Kawano, and N. Wada, “Parametrization of linear controllers for p𝑝pitalic_p-dominance,” IEEE Control Systems Letters, vol. 7, pp. 1879–1884, 2023.
  36. W. Che and F. Forni, “Dominant mixed feedback design for stable oscillations,” IEEE Transactions on Automatic Control, pp. 1–8, 2023.
  37. R. Sepulchre, M. Arcak, and A. R. Teel, “Trading the stability of finite zeros for global stabilization of nonlinear cascade systems,” IEEE Transactions on Automatic Control, vol. 47, no. 3, pp. 521–525, 2002.
  38. F. Forni and R. Sepulchre, “Differentially positive systems,” IEEE Transactions on Automatic Control, vol. 61, no. 2, pp. 346–359, 2016.
  39. D. Angeli and E. Sontag, “Monotone control systems,” IEEE Transactions on Automatic Control, vol. 48, no. 10, pp. 1684–1698, 2003.
  40. M. Y. Li and J. S. Muldowney, “On R.A. Smith’s Autonomous Convergence Theorem,” Rocky Mountain Journal of Mathematics, vol. 25, no. 1, pp. 365 – 378, 1995.
  41. O. E. Rössler, “Continuous chaos—four prototype equations,” Annals of the New York Academy of Sciences, vol. 316, no. 1, pp. 376–392, 1979.
Citations (4)

Summary

We haven't generated a summary for this paper yet.