2000 character limit reached
$k$-Contraction in a Generalized Lurie System (2309.07514v4)
Published 14 Sep 2023 in eess.SY and cs.SY
Abstract: We derive a sufficient condition for $k$-contraction in a generalized Lurie system~(GLS), that is, the feedback connection of a nonlinear dynamical system and a memoryless nonlinear function. For $k=1$, this reduces to a sufficient condition for standard contraction. For $k=2$, this condition implies that every bounded solution of the GLS converges to an equilibrium, which is not necessarily unique. We demonstrate the theoretical results by analyzing $k$-contraction in a biochemical control circuit with nonlinear dissipation terms.
- Z. Aminzare and E. D. Sontag, “Contraction methods for nonlinear systems: A brief introduction and some open problems,” in Proc. 53rd IEEE Conf. on Decision and Control, Los Angeles, CA, 2014, pp. 3835–3847.
- V. Andrieu and S. Tarbouriech, “LMI conditions for contraction and synchronization,” IFAC-PapersOnLine, vol. 52, no. 16, pp. 616–621, 2019, 11th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2019).
- D. Angeli, J. E. Ferrell, and E. D. Sontag, “Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems,” Proceedings of the National Academy of Sciences, vol. 101, no. 7, pp. 1822–1827, 2004.
- D. Angeli, D. Martini, G. Innocenti, and A. Tesi, “A small-gain theorem for 2-contraction of nonlinear interconnected systems,” 2023. [Online]. Available: https://arxiv.org/abs/2305.03211
- E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine, “Stability and robustness analysis of nonlinear systems via contraction metrics and SOS programming,” Automatica, vol. 44, no. 8, pp. 2163–2170, 2008.
- E. Bar-Shalom, O. Dalin, and M. Margaliot, “Compound matrices in systems and control theory: a tutorial,” Math. Control Signals Systems, vol. 35, pp. 467–521, 2023.
- N. Boffi, S. Tu, N. Matni, J.-J. Slotine, and V. Sindhwani, “Learning stability certificates from data,” in Proc. 2020 Conf. on Robot Learning, vol. 155, 2021, pp. 1341–1350.
- N. M. Boffi and J.-J. E. Slotine, “Implicit regularization and momentum algorithms in nonlinearly parameterized adaptive control and prediction,” Neural Computation, vol. 33, no. 3, pp. 590–673, 2021.
- V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo, “Euclidean contractivity of neural networks with symmetric weights,” IEEE Control Systems Letters, vol. 7, pp. 1724–1729, 2023.
- C.-Y. Cheng, K.-H. Lin, and C.-W. Shin, “Multistability in recurrent neural networks,” SIAM J. Applied Math., vol. 66, no. 4, pp. 1301–1320, 2006.
- S.-J. Chung and J.-J. E. Slotine, “Cooperative robot control and concurrent synchronization of Lagrangian systems,” IEEE Trans. Robot., vol. 25, no. 3, pp. 686–700, 2009.
- M. A. Cohen and S. Grossberg, “Absolute stability of global pattern formation and parallel memory storage by competitive neural networks,” IEEE Trans. Systems, Man, and Cybernetics, vol. SMC-13, no. 5, pp. 815–826, 1983.
- O. Dalin, R. Ofir, E. B. Shalom, A. Ovseevich, F. Bullo, and M. Margaliot, “Verifying k𝑘kitalic_k-contraction without computing k𝑘kitalic_k-compounds,” IEEE Trans. Automat. Control, vol. 69, no. 3, pp. 1492–1506, 2024.
- A. Davydov, S. Jafarpour, and F. Bullo, “Non-Euclidean contraction theory for robust nonlinear stability,” IEEE Trans. Automat. Control, vol. 67, no. 12, pp. 6667–6681, 2022.
- A. Fradkov, “Early ideas of the absolute stability theory,” in 2020 European Control Conference (ECC), 2020, pp. 762–768.
- M. Giaccagli, V. Andrieu, S. Tarbouriech, and D. Astolfi, “Infinite gain margin, contraction and optimality: an LMI-based design,” Euro. J. Control, p. 100685, 2022.
- S. Jafarpour, A. Davydov, A. Proskurnikov, and F. Bullo, “Robust implicit networks via non-Euclidean contractions,” in Advances in Neural Information Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34. Curran Associates, Inc., 2021, pp. 9857–9868.
- L. Kozachkov, M. Ennis, and J.-J. Slotine, “RNNs of RNNs: Recursive construction of stable assemblies of recurrent neural networks,” Advances in Neural Information Processing Systems, vol. 35, pp. 30 512–30 527, 2022.
- L. Kozachkov, M. Lundqvist, J.-J. Slotine, and E. K. Miller, “Achieving stable dynamics in neural circuits,” PLoS computational biology, vol. 16, no. 8, p. e1007659, 2020.
- L. Kozachkov, J. Tauber, M. Lundqvist, S. L. Brincat, J.-J. Slotine, and E. K. Miller, “Robust and brain-like working memory through short-term synaptic plasticity,” PLOS Computational Biology, vol. 18, no. 12, p. e1010776, 2022.
- L. Kozachkov, P. Wensing, and J.-J. Slotine, “Generalization as dynamical robustness–the role of Riemannian contraction in supervised learning,” Transactions on Machine Learning Research, 2023. [Online]. Available: https://openreview.net/forum?id=Sb6p5mcefw
- A. Lakshmanan, A. Gahlawat, and N. Hovakimyan, “Safe feedback motion planning: A contraction theory and ℒ1subscriptℒ1\mathcal{L}_{1}caligraphic_L start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-adaptive control based approach,” in Proc. 59th IEEE Conf. on Decision and Control, 2020, pp. 1578–1583.
- D. Lee, L. Aolaritei, T. L. Vu, and K. Turitsyn, “Robustness against disturbances in power systems under frequency constraints,” IEEE Trans. Control Network Systems, vol. 6, no. 3, pp. 971–979, 2019.
- M. Y. Li and J. S. Muldowney, “On R. A. Smith’s autonomous convergence theorem,” Rocky Mountain J. Math., vol. 25, no. 1, pp. 365–378, 1995.
- M. R. Liberzon, “Lur’e problem of absolute stability - a historical essay,” IFAC Proc. Volumes, vol. 34, no. 6, pp. 25–28, 2001, 5th IFAC Symposium on Nonlinear Control Systems 2001, St Petersburg, Russia, 4-6 July 2001.
- W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear systems,” Automatica, vol. 34, pp. 683–696, 1998.
- K. A. Lurie, “Some recollections about Anatolii Isakovich Lurie,” IFAC Proc. Volumes, vol. 34, no. 6, pp. 35–38, 2001, 5th IFAC Symp. Nonlinear Control Systems, St. Petersburg, Russia.
- I. R. Manchester and J.-J. E. Slotine, “Control contraction metrics: Convex and intrinsic criteria for nonlinear feedback design,” IEEE Trans. Automat. Control, vol. 62, no. 6, pp. 3046–3053, 2017.
- ——, “Combination properties of weakly contracting systems,” 2015. [Online]. Available: https://arxiv.org/abs/1408.5174
- M. Margaliot, E. D. Sontag, and T. Tuller, “Entrainment to periodic initiation and transition rates in a computational model for gene translation,” PLoS ONE, vol. 9, no. 5, p. e96039, 2014.
- M. Margaliot, “Stability analysis of switched systems using variational principles: An introduction,” Automatica, vol. 42, no. 12, pp. 2059–2077, 2006.
- M. Margaliot, E. D. Sontag, and T. Tuller, “Contraction after small transients,” Automatica, vol. 67, pp. 178–184, 2016.
- J. S. Muldowney, “Compound matrices and ordinary differential equations,” Rocky Mountain J. Math., vol. 20, no. 4, pp. 857–872, 1990.
- H. D. Nguyen, T. L. Vu, J.-J. Slotine, and K. Turitsyn, “Contraction analysis of nonlinear DAE systems,” IEEE Trans. Automat. Control, vol. 66, no. 1, 2021.
- R. Ofir and M. Margaliot, “Multiplicative and additive compounds via Kronecker products and Kronecker sums,” 2024, submitted. [Online]. Available: https://arxiv.org/abs/2401.02100
- R. Ofir, M. Margaliot, Y. Levron, and J.-J. Slotine, “Serial interconnections of 1-contracting and 2-contracting systems,” in Proc. 60th IEEE Conf. on Decision and Control, 2021, pp. 3906–3911.
- ——, “A sufficient condition for k𝑘kitalic_k-contraction of the series connection of two systems,” IEEE Trans. Automat. Control, vol. 67, no. 9, pp. 4994–5001, 2022.
- R. Ofir, A. Ovseevich, and M. Margaliot, “Contraction and k-contraction in Lurie systems with applications to networked systems,” Automatica, vol. 159, p. 111341, 2024.
- Q.-C. Pham and J.-J. Slotine, “Stable concurrent synchronization in dynamic system networks,” Neural Networks, vol. 20, no. 1, pp. 62–77, 2007.
- A. V. Proskurnikov, A. Davydov, and F. Bullo, “The Yakubovich S-Lemma revisited: Stability and contractivity in non-Euclidean norms,” SIAM J. Control Optim., vol. 61, no. 4, pp. 1955–1978, 2023.
- H. Qiao, J. Peng, and Z.-B. Xu, “Nonlinear measures: a new approach to exponential stability analysis for Hopfield-type neural networks,” IEEE Trans. Neural Networks, vol. 12, no. 2, pp. 360–370, 2001.
- M. Revay, R. Wang, and I. R. Manchester, “Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness,” IEEE Trans. Automat. Control, 2023, to appear.
- ——, “Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness,” IEEE Trans. Automat. Control, pp. 1–16, 2023.
- G. Russo, M. di Bernardo, and E. D. Sontag, “Global entrainment of transcriptional systems to periodic inputs,” PLOS Computational Biology, vol. 6, p. e1000739, 2010.
- G. Russo, M. di Bernardo, and E. Sontag, “A contraction approach to the hierarchical analysis and design of networked systems,” IEEE Trans. Automat. Control, vol. 58, no. 5, pp. 1328–1331, 2013.
- G. Russo, M. di Bernardo, and J. J. Slotine, “Contraction theory for systems biology,” in Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology, H. Koeppl, G. Setti, M. di Bernardo, and D. Densmore, Eds. New York, NY: Springer, 2011, pp. 93–114.
- S. Singh, B. Landry, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust feedback motion planning via contraction theory,” Int. J. Robotics Research, 2023.
- D. Sun, S. Jha, and C. Fan, “Learning certified control using contraction metric,” in Proc. 2020 Conf. on Robot Learning, vol. 155, 2021, pp. 1519–1539.
- H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, “Neural stochastic contraction metrics for learning-based control and estimation,” IEEE Control Systems Letters, vol. 5, no. 5, pp. 1825–1830, 2021.
- W. Wang and J. J. E. Slotine, “On partial contraction analysis for coupled nonlinear oscillators,” Biological Cybernetics, vol. 92, no. 1, 2005.
- P. M. Wensing and J.-J. Slotine, “Beyond convexity—contraction and global convergence of gradient descent,” PLOS ONE, vol. 15, no. 8, pp. 1–29, 08 2020.
- C. Wu, I. Kanevskiy, and M. Margaliot, “k𝑘kitalic_k-contraction: theory and applications,” Automatica, vol. 136, p. 110048, 2022.
- C. Wu, R. Pines, M. Margaliot, and J.-J. Slotine, “Generalization of the multiplicative and additive compounds of square matrices and contraction theory in the Hausdorff dimension,” IEEE Trans. Automat. Control, vol. 67, no. 9, pp. 4629–4644, 2022.