Sachdev-Ye-Kitaev model on a noisy quantum computer (2311.17991v4)
Abstract: We study the SYK model -- an important toy model for quantum gravity on IBM's superconducting qubit quantum computers. By using a graph-coloring algorithm to minimize the number of commuting clusters of terms in the qubitized Hamiltonian, we find the gate complexity of the time evolution using the first-order product formula for $N$ Majorana fermions is $\mathcal{O}(N5 J{2}t2/\epsilon)$ where $J$ is the dimensionful coupling parameter, $t$ is the evolution time, and $\epsilon$ is the desired precision. With this improved resource requirement, we perform the time evolution for $N=6, 8$ with maximum two-qubit circuit depth of 343. We perform different error mitigation schemes on the noisy hardware results and find good agreement with the exact diagonalization results on classical computers and noiseless simulators. In particular, we compute return probability after time $t$ and out-of-time order correlators (OTOC) which is a standard observable of quantifying the chaotic nature of quantum systems.
- E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291, arXiv:hep-th/9802150.
- S. Catterall, R. G. Jha, D. Schaich, and T. Wiseman, “Testing holography using lattice super-Yang-Mills theory on a 2-torus,” Phys. Rev. D 97 no. 8, (2018) 086020, arXiv:1709.07025 [hep-th].
- S. Catterall, J. Giedt, R. G. Jha, D. Schaich, and T. Wiseman, “Three-dimensional super-Yang–Mills theory on the lattice and dual black branes,” Phys. Rev. D 102 no. 10, (2020) 106009, arXiv:2010.00026 [hep-th].
- S. Sachdev and J. Ye, “Gapless spin fluid ground state in a random, quantum Heisenberg magnet,” Phys. Rev. Lett. 70 (1993) 3339, arXiv:cond-mat/9212030.
- A. Kitaev, “A simple model of quantum holography,”. http://online.kitp.ucsb.edu/online/entangled15/.
- S. Sachdev, “Bekenstein-Hawking Entropy and Strange Metals,” Phys. Rev. X 5 no. 4, (2015) 041025, arXiv:1506.05111 [hep-th].
- J. Maldacena and D. Stanford, “Remarks on the Sachdev-Ye-Kitaev model,” Phys. Rev. D 94 no. 10, (2016) 106002, arXiv:1604.07818 [hep-th].
- J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” JHEP 08 (2016) 106, arXiv:1503.01409 [hep-th].
- G. Gur-Ari, R. Mahajan, and A. Vaezi, “Does the SYK model have a spin glass phase?,” JHEP 11 (2018) 070, arXiv:1806.10145 [hep-th].
- B. Kobrin, Z. Yang, G. D. Kahanamoku-Meyer, C. T. Olund, J. E. Moore, D. Stanford, and N. Y. Yao, “Many-Body Chaos in the Sachdev-Ye-Kitaev Model,” Phys. Rev. Lett. 126 no. 3, (2021) 030602, arXiv:2002.05725 [hep-th].
- R.-Q. Yang and K.-Y. Kim, “Time evolution of the complexity in chaotic systems: a concrete example,” JHEP 05 (2020) 045, arXiv:1906.02052 [hep-th].
- L. García-Álvarez, I. L. Egusquiza, L. Lamata, A. del Campo, J. Sonner, and E. Solano, “Digital Quantum Simulation of Minimal AdS/CFT,” Phys. Rev. Lett. 119 no. 4, (2017) 040501, arXiv:1607.08560 [quant-ph].
- Z. Luo, Y.-Z. You, J. Li, C.-M. Jian, D. Lu, C. Xu, B. Zeng, and R. Laflamme, “Quantum Simulation of the Non-Fermi-Liquid State of Sachdev-Ye-Kitaev Model,” npj Quantum Inf. 5 (2019) 53, arXiv:1712.06458 [quant-ph].
- R. Babbush, D. W. Berry, and H. Neven, “Quantum Simulation of the Sachdev-Ye-Kitaev Model by Asymmetric Qubitization,” Phys. Rev. A 99 no. 4, (2019) 040301, arXiv:1806.02793 [quant-ph].
- A. M. Childs, Y. Su, M. C. Tran, N. Wiebe, and S. Zhu, “A Theory of Trotter Error,” arXiv e-prints (Dec., 2019) arXiv:1912.08854, arXiv:1912.08854 [quant-ph].
- S. Lloyd, “Universal quantum simulators,” Science 273 no. 5278, (Aug., 1996) 1073–1078. https://doi.org/10.1126/science.273.5278.1073.
- J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2 (2018) 79, arXiv:1801.00862 [quant-ph].
- S. Barison, F. Vicentini, and G. Carleo, “An efficient quantum algorithm for the time evolution of parameterized circuits,” Quantum 5 (July, 2021) 512, arXiv:2101.04579 [quant-ph].
- J. W. Z. Lau, T. Haug, L. C. Kwek, and K. Bharti, “NISQ Algorithm for Hamiltonian simulation via truncated Taylor series,” SciPost Physics 12 no. 4, (Apr., 2022) 122, arXiv:2103.05500 [quant-ph].
- A. Kay, “Tutorial on the Quantikz Package,” arXiv:1809.03842 [quant-ph].
- V. Shende, S. Bullock, and I. Markov, “Synthesis of quantum-logic circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25 no. 6, (June, 2006) 1000–1010. https://doi.org/10.1109/tcad.2005.855930.
- D. Brélaz, “New methods to color the vertices of a graph,” Commun. ACM 22 no. 4, (Apr, 1979) 251–256. https://doi.org/10.1145/359094.359101.
- E. van den Berg and K. Temme, “Circuit optimization of hamiltonian simulation by simultaneous diagonalization of pauli clusters,” Quantum 4 (Sep, 2020) 322. https://doi.org/10.22331%2Fq-2020-09-12-322.
- K. Gui, T. Tomesh, P. Gokhale, Y. Shi, F. T. Chong, M. Martonosi, and M. Suchara, “Term Grouping and Travelling Salesperson for Digital Quantum Simulation,” arXiv e-prints (Jan., 2020) arXiv:2001.05983, arXiv:2001.05983 [quant-ph].
- D. Miller, L. E. Fischer, I. O. Sokolov, P. K. Barkoutsos, and I. Tavernelli, “Hardware-Tailored Diagonalization Circuits,” arXiv:2203.03646 [quant-ph].
- T. Kurita, M. Morita, H. Oshima, and S. Sato, “Pauli string partitioning algorithm with the ising model for simultaneous measurement,” 2022.
- E. M. Murairi and M. J. Cervia, “Reducing Circuit Depth with Qubitwise Diagonalization,” arXiv:2306.00170 [quant-ph].
- A. Jena, S. Genin, and M. Mosca, “Pauli Partitioning with Respect to Gate Sets,” arXiv e-prints (July, 2019) arXiv:1907.07859, arXiv:1907.07859 [quant-ph].
- V. Verteletskyi, T.-C. Yen, and A. F. Izmaylov, “Measurement optimization in the variational quantum eigensolver using a minimum clique cover,” J. Chem. Phys. 152 no. 12, (Mar., 2020) 124114, arXiv:1907.03358 [quant-ph].
- E. M. Murairi, M. J. Cervia, H. Kumar, P. F. Bedaque, and A. Alexandru, “How many quantum gates do gauge theories require?,” Phys. Rev. D 106 no. 9, (2022) 094504, arXiv:2208.11789 [hep-lat].
- T. Numasawa, “Late time quantum chaos of pure states in random matrices and in the Sachdev-Ye-Kitaev model,” Phys. Rev. D 100 no. 12, (2019) 126017, arXiv:1901.02025 [hep-th].
- Y. Liu, M. A. Nowak, and I. Zahed, “Disorder in the Sachdev-Yee-Kitaev Model,” Phys. Lett. B 773 (2017) 647–653, arXiv:1612.05233 [hep-th].
- J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka, “Black Holes and Random Matrices,” JHEP 05 (2017) 118, arXiv:1611.04650 [hep-th]. [Erratum: JHEP 09, 002 (2018)].
- J. J. Wallman and J. Emerson, “Noise tailoring for scalable quantum computation via randomized compiling,” Phys. Rev. A 94 no. 5, (Nov., 2016) 052325, arXiv:1512.01098 [quant-ph].
- S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, “Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum computer,” Phys. Rev. D 106 no. 7, (2022) 074502, arXiv:2205.09247 [hep-lat].
- M. Urbanek, B. Nachman, V. R. Pascuzzi, A. He, C. W. Bauer, and W. A. de Jong, “Mitigating depolarizing noise on quantum computers with noise-estimation circuits,” Phys. Rev. Lett. 127 (Dec, 2021) 270502. https://link.aps.org/doi/10.1103/PhysRevLett.127.270502.
- P. D. Nation, H. Kang, N. Sundaresan, and J. M. Gambetta, “Scalable mitigation of measurement errors on quantum computers,” PRX Quantum 2 (Nov, 2021) 040326. https://link.aps.org/doi/10.1103/PRXQuantum.2.040326.
- L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Phys. Rev. A 58 (Oct, 1998) 2733–2744. https://link.aps.org/doi/10.1103/PhysRevA.58.2733.
- P. Zanardi, “Symmetrizing evolutions,” Physics Letters A 258 no. 2, (1999) 77–82. https://www.sciencedirect.com/science/article/pii/S0375960199003655.
- D. Vitali and P. Tombesi, “Using parity kicks for decoherence control,” Phys. Rev. A 59 (Jun, 1999) 4178–4186. https://link.aps.org/doi/10.1103/PhysRevA.59.4178.
- N. Ezzell, B. Pokharel, L. Tewala, G. Quiroz, and D. A. Lidar, “Dynamical decoupling for superconducting qubits: a performance survey,” arXiv:2207.03670 [quant-ph].
- P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida, “Chaos in quantum channels,” JHEP 02 (2016) 004, arXiv:1511.04021 [hep-th].
- W. Fu and S. Sachdev, “Numerical study of fermion and boson models with infinite-range random interactions,” Phys. Rev. B 94 no. 3, (2016) 035135, arXiv:1603.05246 [cond-mat.str-el].
- A. Kitaev and S. J. Suh, “The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual,” JHEP 05 (2018) 183, arXiv:1711.08467 [hep-th].
- E. Lantagne-Hurtubise, S. Plugge, O. Can, and M. Franz, “Diagnosing quantum chaos in many-body systems using entanglement as a resource,” Phys. Rev. Res. 2 no. 1, (2020) 013254, arXiv:1907.01628 [cond-mat.str-el].
- A. I. Larkin and Y. N. Ovchinnikov, “Quasiclassical Method in the Theory of Superconductivity,” Soviet Journal of Experimental and Theoretical Physics 28 (June, 1969) 1200.
- B. Yan, L. Cincio, and W. H. Zurek, “Information scrambling and loschmidt echo,” Phys. Rev. Lett. 124 (Apr, 2020) 160603. https://link.aps.org/doi/10.1103/PhysRevLett.124.160603.
- C. Sünderhauf, L. Piroli, X.-L. Qi, N. Schuch, and J. I. Cirac, “Quantum chaos in the Brownian SYK model with large finite N𝑁Nitalic_N: OTOCs and tripartite information,” JHEP 11 (2019) 038, arXiv:1908.00775 [quant-ph].
- Y. Cao, Y.-N. Zhou, T.-T. Shi, and W. Zhang, “Towards quantum simulation of Sachdev-Ye-Kitaev model,” Sci. Bull. 65 (2020) 1170–1176, arXiv:2003.01514 [cond-mat.dis-nn].
- T. Anegawa, N. Iizuka, A. Mukherjee, S. K. Sake, and S. P. Trivedi, “Sparse random matrices and Gaussian ensembles with varying randomness,” arXiv:2305.07505 [hep-th].
- J. Li, R. Fan, H. Wang, B. Ye, B. Zeng, H. Zhai, X. Peng, and J. Du, “Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator,” Phys. Rev. X 7 (Jul, 2017) 031011. https://link.aps.org/doi/10.1103/PhysRevX.7.031011.
- M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J. Bollinger, and A. M. Rey, “Measuring out-of-time-order correlations and multiple quantum spectra in a trapped ion quantum magnet,” Nature Phys. 13 (2017) 781, arXiv:1608.08938 [quant-ph].
- N. Y. Yao, F. Grusdt, B. Swingle, M. D. Lukin, D. M. Stamper-Kurn, J. E. Moore, and E. A. Demler, “Interferometric Approach to Probing Fast Scrambling,” arXiv:1607.01801 [quant-ph].
- D. Aggarwal, S. Raj, B. K. Behera, and P. K. Panigrahi, “Application of quantum scrambling in Rydberg atom on IBM quantum computer,” arXiv e-prints (June, 2018) arXiv:1806.00781, arXiv:1806.00781 [quant-ph].
- B. Vermersch, A. Elben, L. M. Sieberer, N. Y. Yao, and P. Zoller, “Probing scrambling using statistical correlations between randomized measurements,” Phys. Rev. X 9 no. 2, (2019) 021061, arXiv:1807.09087 [quant-ph].
- X. Mi et al., “Information scrambling in quantum circuits,” Science 374 no. 6574, (2021) abg5029, arXiv:2101.08870 [quant-ph].
- M. Asaduzzaman, S. Catterall, Y. Meurice, and G. C. Toga, “Quantum Ising model on two dimensional anti-de Sitter space,” arXiv:2309.04383 [quant-ph].
- E. Van Den Berg, Z. K. Minev, and K. Temme, “Model-free readout-error mitigation for quantum expectation values,” Physical Review A 105 no. 3, (2022) 032620.
- C. Dankert, R. Cleve, J. Emerson, and E. Livine, “Exact and approximate unitary 2-designs and their application to fidelity estimation,” Physical Review A 80 no. 1, (2009) 012304.
- Y. Nakata et al., “Quantum Circuits for Exact Unitary t-Designs and Applications to Higher-Order Randomized Benchmarking,” PRX Quantum 2 no. 3, (2021) 030339, arXiv:2102.12617 [quant-ph].
- S. Xu, L. Susskind, Y. Su, and B. Swingle, “A Sparse Model of Quantum Holography,” arXiv:2008.02303 [cond-mat.str-el].
- A. M. García-García, Y. Jia, D. Rosa, and J. J. M. Verbaarschot, “Sparse Sachdev-Ye-Kitaev model, quantum chaos and gravity duals,” Phys. Rev. D 103 no. 10, (2021) 106002, arXiv:2007.13837 [hep-th].
- M. Hanada, A. Jevicki, X. Liu, E. Rinaldi, and M. Tezuka, “A model of randomly-coupled Pauli spins,” arXiv:2309.15349 [hep-th].
- D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev, “Sachdev-Ye-Kitaev models and beyond: Window into non-Fermi liquids,” Rev. Mod. Phys. 94 no. 3, (2022) 035004, arXiv:2109.05037 [cond-mat.str-el].
- M. Asaduzzaman, R. G. Jha, and B. Sambasivam, “A model of quantum gravity on a noisy quantum computer - notebooks and quantum circuits release,” Zenodo (November, 2023) . https://zenodo.org/record/10202045.
- J. K. Iverson and J. Preskill, “Coherence in logical quantum channels,” New Journal of Physics 22 no. 7, (July, 2020) 073066, arXiv:1912.04319 [quant-ph].
- M. Urbanek, B. Nachman, V. R. Pascuzzi, A. He, C. W. Bauer, and W. A. de Jong, “Mitigating depolarizing noise on quantum computers with noise-estimation circuits,” Phys. Rev. L 127 (2021) 270502, arXiv:2103.08591 [quant-ph].
- A. He, B. Nachman, W. A. de Jong, and C. W. Bauer, “Zero-noise extrapolation for quantum-gate error mitigation with identity insertions,” Phys. Rev. A 102 no. 1, (2020) 012426, arXiv:2003.04941 [quant-ph].
- P. Nation, “Generating Pauli-twirled circuits in Qiskit,”. https://quantum-enablement.org/posts/2023/2023-02-02-pauli_twirling.html.
- X. Chen, T. Zhou, and C. Xu, “Measuring the distance between quantum many-body wave functions,” Journal of Statistical Mechanics: Theory and Experiment 2018 no. 7, (2018) 073101.
- M. Asaduzzaman, S. Catterall, G. C. Toga, Y. Meurice, and R. Sakai, “Quantum simulation of the N-flavor Gross-Neveu model,” Phys. Rev. D 106 no. 11, (2022) 114515, arXiv:2208.05906 [hep-lat].
- D. C. McKay, I. Hincks, E. J. Pritchett, M. Carroll, L. C. G. Govia, and S. T. Merkel, “Benchmarking Quantum Processor Performance at Scale,” arXiv:2311.05933 [quant-ph].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.