Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CrimeGNN: Harnessing the Power of Graph Neural Networks for Community Detection in Criminal Networks (2311.17479v1)

Published 29 Nov 2023 in cs.SI

Abstract: In this paper, we introduce CrimeGNN, a novel application of Graph Neural Networks (GNNs) specifically designed to uncover hidden communities within criminal networks. As criminal activities increasingly rely on complex network structures, traditional methods of network analysis often fall short in detecting the intricate and dynamic communities within these networks. Leveraging the power of GNNs, CrimeGNN provides an advanced and specialized solution to this problem. The model ingests a graph structure of a criminal network, where vertices represent individuals and edges represent relationships between them. CrimeGNN aims to identify a partition of the vertex set, such that each subset represents a distinct community within the network, maximizing the modularity function. Experimental results on several benchmark datasets demonstrate the effectiveness of CrimeGNN, outperforming existing methods in terms of both accuracy and computational efficiency. The proposed framework offers significant potential for aiding law enforcement agencies in proactive policing and crime prevention measures by providing a more in-depth understanding of the structure and operation of criminal networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. K. Basu and A. Sen, “Identifying individuals associated with organized criminal networks: a social network analysis,” Social Networks, vol. 64, pp. 42–54, 2021.
  2. P. Zhou, Y. Liu, M. Zhao, and X. Lou, “Criminal network analysis with interactive strategies: A proof of concept study using mobile call logs.” in SEKE, 2016, pp. 261–266.
  3. J. Xu and H. Chen, “Criminal network analysis and visualization,” Communications of the ACM, vol. 48, no. 6, pp. 100–107, 2005.
  4. P. Zhou, Y. Liu, M. Zhao, and X. Lou, “A proof of concept study for criminal network analysis with interactive strategies,” International Journal of Software Engineering and Knowledge Engineering, vol. 27, no. 04, pp. 623–639, 2017.
  5. D. M. Schwartz and T. Rouselle, “Using social network analysis to target criminal networks,” Trends in Organized Crime, vol. 12, no. 2, pp. 188–207, 2009.
  6. H. Liu, P. Zhou, and Y. Tang, “Customizing clothing retrieval based on semantic attributes and learned features,” 2016.
  7. J. Zhao, Y. Liu, and P. Zhou, “Framing a sustainable architecture for data analytics systems: An exploratory study,” IEEE Access, vol. 6, pp. 61 600–61 613, 2018.
  8. W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-gcn: An efficient algorithm for training deep and large graph convolutional networks,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 257–266.
  9. H. Wang, F. Zhang, M. Hou, X. Xie, M. Guo, and Q. Liu, “Shine: Signed heterogeneous information network embedding for sentiment link prediction,” in Proceedings of the eleventh ACM international conference on web search and data mining, 2018, pp. 592–600.
  10. J. Bai, J. Zhu, Y. Song, L. Zhao, Z. Hou, R. Du, and H. Li, “A3t-gcn: Attention temporal graph convolutional network for traffic forecasting,” ISPRS International Journal of Geo-Information, vol. 10, no. 7, p. 485, 2021.
  11. M. Zhao, Y. Liu, and P. Zhou, “Towards a systematic approach to graph data modeling: Scenario-based design and experiences.” in SEKE, 2016, pp. 634–637.
  12. J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph neural networks: A review of methods and applications,” AI open, vol. 1, pp. 57–81, 2020.
  13. P. Zhou et al., “Lageo: a latent and geometrical framework for path and manipulation planning,” 2022.
  14. Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehensive survey on graph neural networks,” IEEE transactions on neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.
  15. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE transactions on neural networks, vol. 20, no. 1, pp. 61–80, 2008.
  16. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
  17. C. Alt, M. Hübner, and L. Hennig, “Fine-tuning pre-trained transformer language models to distantly supervised relation extraction,” arXiv preprint arXiv:1906.08646, 2019.
  18. L. J. Hellesoe, “Automatic domain-specific text summarisation with deep learning approaches,” Ph.D. dissertation, Auckland University of Technology, 2022.
  19. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
  20. B. Santra, P. Anusha, and P. Goyal, “Hierarchical transformer for task oriented dialog systems,” arXiv preprint arXiv:2011.08067, 2020.
  21. Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised learning with graph embeddings,” in International conference on machine learning.   PMLR, 2016, pp. 40–48.
  22. X.-S. Zhang, R.-S. Wang, Y. Wang, J. Wang, Y. Qiu, L. Wang, and L. Chen, “Modularity optimization in community detection of complex networks,” Europhysics Letters, vol. 87, no. 3, p. 38002, 2009.
  23. Y. Li, K. He, K. Kloster, D. Bindel, and J. Hopcroft, “Local spectral clustering for overlapping community detection,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 12, no. 2, pp. 1–27, 2018.
  24. T. Alzahrani and K. J. Horadam, “Community detection in bipartite networks: Algorithms and case studies,” in Complex systems and networks: Dynamics, controls and applications.   Springer, 2015, pp. 25–50.
Citations (3)

Summary

We haven't generated a summary for this paper yet.