Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Constrained Community Detection via Self-Expressive Graph Neural Network (2011.14078v2)

Published 28 Nov 2020 in cs.SI and cs.LG

Abstract: Graph neural networks (GNNs) are able to achieve promising performance on multiple graph downstream tasks such as node classification and link prediction. Comparatively lesser work has been done to design GNNs which can operate directly for community detection on graphs. Traditionally, GNNs are trained on a semi-supervised or self-supervised loss function and then clustering algorithms are applied to detect communities. However, such decoupled approaches are inherently sub-optimal. Designing an unsupervised loss function to train a GNN and extract communities in an integrated manner is a fundamental challenge. To tackle this problem, we combine the principle of self-expressiveness with the framework of self-supervised graph neural network for unsupervised community detection for the first time in literature. Our solution is trained in an end-to-end fashion and achieves state-of-the-art community detection performance on multiple publicly available datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sambaran Bandyopadhyay (20 papers)
  2. Vishal Peter (1 paper)
Citations (9)

Summary

We haven't generated a summary for this paper yet.