Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainties in Robust Planning and Control of Autonomous Tractor-Trailer Vehicles (2311.14573v1)

Published 24 Nov 2023 in eess.SY and cs.SY

Abstract: To study the effects of uncertainty in autonomous motion planning and control, an 8-DOF model of a tractor-semitrailer is implemented and analyzed. The implications of uncertainties in the model are then quantified and presented using sensitivity analysis and closed-loop simulations. The analysis reveals that the significance of various model parameters varies depending on the specific scenario under investigation. By using sampling-based closed-loop predictions, uncertainty bounds on state variable trajectories are determined. Our findings suggest the potential for the inclusion of our method within a robust predictive controller or as a driver-assistance system for rollover or lane departure warnings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. V. Fors, B. Olofsson, and E. Frisk, “Resilient branching MPC for multi-vehicle traffic scenarios using adversarial disturbance sequences,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 4, pp. 838–848, 2022.
  2. T. Westny, J. Oskarsson, B. Olofsson, and E. Frisk, “MTP-GO: Graph-based probabilistic multi-agent trajectory prediction with neural ODEs,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 9, pp. 4223–4236, 2023.
  3. J. Zhou, B. Olofsson, and E. Frisk, “Interaction-aware motion planning for autonomous vehicles with multi-modal obstacle uncertainty predictions,” IEEE Transactions on Intelligent Vehicles, 2023.
  4. D. J. M. Sampson, “Active roll control of articulated heavy vehicles,” Ph.D. dissertation, Cambridge University Engineering Department, 2000.
  5. M. Tai and M. Tomizuka, “Robust lateral control of heavy duty vehicles for automated highway systems,” IFAC Proceedings Volumes, vol. 32, no. 2, pp. 8309–8314, 1999.
  6. M. Sadeghi Kati, H. Köroğlu, and J. Fredriksson, “Robust lateral control of long-combination vehicles under moments of inertia and tyre cornering stiffness uncertainties,” Vehicle System Dynamics, vol. 57, no. 12, pp. 1847–1873, 2019.
  7. J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle models for autonomous driving control design,” in 2015 IEEE Intelligent Vehicles Symposium (IV), 2015, pp. 1094–1099.
  8. M. M. Islam, N. Fröjd, S. Kharrazi, and B. Jacobson, “How well a single-track linear model captures the lateral dynamics of long combination vehicles,” Vehicle System Dynamics, vol. 57, no. 12, pp. 1874–1896, 2019.
  9. M. Gäfvert and O. Lindgärde, “A 9-dof tractor-semitrailer dynamic handling model for advanced chassis control studies,” Vehicle System Dynamics, vol. 41, no. 1, pp. 51–82, 2004.
  10. C. Chen and M. Tomizuka, “Lateral control of commercial heavy vehicles,” Vehicle System Dynamics, vol. 33, no. 6, pp. 391–420, 2000.
  11. T. Maly and L. R. Petzold, “Numerical methods and software for sensitivity analysis of differential-algebraic systems,” Applied Numerical Mathematics, vol. 20, no. 12, pp. 57–79, 1996.
  12. L. F. Shampine and M. W. Reichelt, “The matlab ode suite,” SIAM Journal on Scientific Computing, vol. 18, no. 1, pp. 1–22, 1997.
  13. B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning and control techniques for self-driving urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

Summary

We haven't generated a summary for this paper yet.