Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Maurer-Cartan characterization and cohomology of compatible LieDer and AssDer pairs (2311.14015v2)

Published 23 Nov 2023 in math.RA

Abstract: A LieDer pair (respectively, an AssDer pair) is a Lie algebra equipped with a derivation (respectively, an associative algebra equipped with a derivation). A couple of LieDer pair structures on a vector space are called Compatible LieDer pairs (respectively, compatible AssDer pairs) if any linear combination of the underlying structure maps is still a LieDer pair (respectively, AssDer pair) structure. In this paper, we study compatible AssDer pairs, compatible LieDer pairs, and their cohomologies. We also discuss about other compatible structures such as compatible dendriform algebras with derivations, compatible zinbiel algebras with derivations, and compatible pre-LieDer pairs. We describe a relationship amongst these compatible structures using specific tools like Rota-Baxter operators, endomorphism operators, and the commutator bracket.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.