Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Test-Time Augmentation for 3D Point Cloud Classification and Segmentation (2311.13152v1)

Published 22 Nov 2023 in cs.CV

Abstract: Data augmentation is a powerful technique to enhance the performance of a deep learning task but has received less attention in 3D deep learning. It is well known that when 3D shapes are sparsely represented with low point density, the performance of the downstream tasks drops significantly. This work explores test-time augmentation (TTA) for 3D point clouds. We are inspired by the recent revolution of learning implicit representation and point cloud upsampling, which can produce high-quality 3D surface reconstruction and proximity-to-surface, respectively. Our idea is to leverage the implicit field reconstruction or point cloud upsampling techniques as a systematic way to augment point cloud data. Mainly, we test both strategies by sampling points from the reconstructed results and using the sampled point cloud as test-time augmented data. We show that both strategies are effective in improving accuracy. We observed that point cloud upsampling for test-time augmentation can lead to more significant performance improvement on downstream tasks such as object classification and segmentation on the ModelNet40, ShapeNet, ScanObjectNN, and SemanticKITTI datasets, especially for sparse point clouds.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Tuan-Anh Vu (14 papers)
  2. Srinjay Sarkar (4 papers)
  3. Zhiyuan Zhang (129 papers)
  4. Binh-Son Hua (47 papers)
  5. Sai-Kit Yeung (52 papers)
Citations (1)