Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unsupervised Graph Attention Autoencoder for Attributed Networks using K-means Loss (2311.12986v2)

Published 21 Nov 2023 in cs.CL and cs.AI

Abstract: Several natural phenomena and complex systems are often represented as networks. Discovering their community structure is a fundamental task for understanding these networks. Many algorithms have been proposed, but recently, Graph Neural Networks (GNN) have emerged as a compelling approach for enhancing this task.In this paper, we introduce a simple, efficient, and clustering-oriented model based on unsupervised \textbf{G}raph Attention \textbf{A}uto\textbf{E}ncoder for community detection in attributed networks (GAECO). The proposed model adeptly learns representations from both the network's topology and attribute information, simultaneously addressing dual objectives: reconstruction and community discovery. It places a particular emphasis on discovering compact communities by robustly minimizing clustering errors. The model employs k-means as an objective function and utilizes a multi-head Graph Attention Auto-Encoder for decoding the representations. Experiments conducted on three datasets of attributed networks show that our method surpasses state-of-the-art algorithms in terms of NMI and ARI. Additionally, our approach scales effectively with the size of the network, making it suitable for large-scale applications. The implications of our findings extend beyond biological network interpretation and social network analysis, where knowledge of the fundamental community structure is essential.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube