Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Power grid operational risk assessment using graph neural network surrogates (2311.12309v1)

Published 21 Nov 2023 in cs.LG, cs.SY, and eess.SY

Abstract: We investigate the utility of graph neural networks (GNNs) as proxies of power grid operational decision-making algorithms (optimal power flow (OPF) and security-constrained unit commitment (SCUC)) to enable rigorous quantification of the operational risk. To conduct principled risk analysis, numerous Monte Carlo (MC) samples are drawn from the (foretasted) probability distributions of spatio-temporally correlated stochastic grid variables. The corresponding OPF and SCUC solutions, which are needed to quantify the risk, are generated using traditional OPF and SCUC solvers to generate data for training GNN model(s). The GNN model performance is evaluated in terms of the accuracy of predicting quantities of interests (QoIs) derived from the decision variables in OPF and SCUC. Specifically, we focus on thermal power generation and load shedding at system and individual zone level. We also perform reliability and risk quantification based on GNN predictions and compare with that obtained from OPF/SCUC solutions. Our results demonstrate that GNNs are capable of providing fast and accurate prediction of QoIs and thus can be good surrogate models for OPF and SCUC. The excellent accuracy of GNN-based reliability and risk assessment further suggests that GNN surrogate has the potential to be applied in real-time and hours-ahead risk quantification.

Citations (2)

Summary

We haven't generated a summary for this paper yet.