Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Operational risk quantification of power grids using graph neural network surrogates of the DC OPF (2311.03661v2)

Published 7 Nov 2023 in eess.SY, cs.LG, and cs.SY

Abstract: A DC OPF surrogate modeling framework is developed for Monte Carlo (MC) sampling-based risk quantification in power grid operation. MC simulation necessitates solving a large number of DC OPF problems corresponding to the samples of stochastic grid variables (power demand and renewable generation), which is computationally prohibitive. Computationally inexpensive surrogates of OPF provide an attractive alternative for expedited MC simulation. Graph neural network (GNN) surrogates of DC OPF, which are especially suitable to graph-structured data, are employed in this work. Previously developed DC OPF surrogate models have focused on accurate operational decision-making and not on risk quantification. Here, risk quantification-specific aspects of DC OPF surrogate evaluation is the main focus. To this end, the proposed GNN surrogates are evaluated using realistic joint probability distributions, quantification of their risk estimation accuracy, and investigation of their generalizability. Four synthetic grids (Case118, Case300, Case1354pegase, and Case2848rte) are used for surrogate model performance evaluation. It is shown that the GNN surrogates are sufficiently accurate for predicting the (bus-level, branch-level and system-level) grid state and enable fast as well as accurate operational risk quantification for power grids. The article thus develops tools for fast reliability and risk quantification in real-world power grids using GNN-based surrogates.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. M. Milligan, P. Donohoo, D. Lew, E. E. Kirby, B. Holttinen, H. Lannoye, E. Flynn, D. O’malley, M. Miller, and N. Eriksen, “Operating reserves and wind power integration: An international comparison,” National Renewable Energy Lab.(NREL), 2010.
  2. Ž. B. Rejc and M. Čepin, “Estimating the additional operating reserve in power systems with installed renewable energy sources,” Int. J. Electr. Power Energy Syst., vol. 62, pp. 654–664, Nov. 2014.
  3. P. J. Heptonstall and R. J. K. Gross, “A systematic review of the costs and impacts of integrating variable renewables into power grids,” Nat. Energy, vol. 6, no. 1, pp. 72–83, Nov. 2020.
  4. Q. P. Zheng, J. Wang, and A. L. Liu, “Stochastic optimization for unit commitment—a review,” IEEE Trans. Power Syst., vol. 30, no. 4, pp. 1913–1924, Jul. 2015.
  5. Y.-Y. Hong and G. F. D. G. Apolinario, “Uncertainty in unit commitment in power systems: A review of models, methods, and applications,” Energies, vol. 14, no. 20, p. 6658, Oct. 2021.
  6. H. Holttinen, M. Milligan, E. Ela, N. Menemenlis, J. Dobschinski, B. Rawn, R. J. Bessa, D. Flynn, E. Gomez Lazaro, and N. Detlefsen, “Methodologies to determine operating reserves due to increased wind power,” in 2013 IEEE Power & Energy Society General Meeting.   IEEE, 2013.
  7. B. Mohandes, M. S. E. Moursi, N. Hatziargyriou, and S. E. Khatib, “A review of power system flexibility with high penetration of renewables,” IEEE Trans. Power Syst., vol. 34, no. 4, pp. 3140–3155, Jul. 2019.
  8. O. Stover, P. Karve, and S. Mahadevan, “Reliability and risk metrics to assess operational adequacy and flexibility of power grids,” Reliab. Eng. Syst. Saf., vol. 231, no. 109018, p. 109018, Mar. 2023.
  9. P. Dehghanian and M. Kezunovic, “Probabilistic decision making for the bulk power system optimal topology control,” IEEE Transactions on Smart Grid, vol. 7, no. 4, pp. 2071–2081, 2016.
  10. G. Shafiullah, A. M. Oo, A. S. Ali, and P. Wolfs, “Potential challenges of integrating large-scale wind energy into the power grid–a review,” Renewable and sustainable energy reviews, vol. 20, pp. 306–321, 2013.
  11. J. Momoh, R. Koessler, M. Bond, B. Stott, D. Sun, A. Papalexopoulos, and P. Ristanovic, “Challenges to optimal power flow,” IEEE Transactions on Power systems, vol. 12, no. 1, pp. 444–455, 1997.
  12. H. W. Dommel and W. F. Tinney, “Optimal power flow solutions,” IEEE Transactions on power apparatus and systems, no. 10, pp. 1866–1876, 1968.
  13. A. G. Bakirtzis and P. N. Biskas, “A decentralized solution to the dc-opf of interconnected power systems,” IEEE Transactions on Power Systems, vol. 18, no. 3, pp. 1007–1013, 2003.
  14. P. N. Biskas, A. G. Bakirtzis, N. I. Macheras, and N. K. Pasialis, “A decentralized implementation of dc optimal power flow on a network of computers,” IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 25–33, 2005.
  15. Y. Xu, J. Hu, W. Gu, W. Su, and W. Liu, “Real-time distributed control of battery energy storage systems for security constrained dc-opf,” IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 1580–1589, 2016.
  16. Y. Wang, L. Wu, and S. Wang, “A fully-decentralized consensus-based admm approach for dc-opf with demand response,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2637–2647, 2016.
  17. D. Biagioni, P. Graf, X. Zhang, A. S. Zamzam, K. Baker, and J. King, “Learning-accelerated admm for distributed dc optimal power flow,” IEEE Control Systems Letters, vol. 6, pp. 1–6, 2020.
  18. L. Yang, J. Luo, Y. Xu, Z. Zhang, and Z. Dong, “A distributed dual consensus admm based on partition for dc-dopf with carbon emission trading,” IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 1858–1872, 2019.
  19. T. Erseghe, “Distributed optimal power flow using admm,” IEEE transactions on power systems, vol. 29, no. 5, pp. 2370–2380, 2014.
  20. M. P. Abraham and A. A. Kulkarni, “Admm-based algorithm for solving dc-opf in a large electricity network considering transmission losses,” IET Generation, Transmission & Distribution, vol. 12, no. 21, pp. 5811–5823, 2018.
  21. S. Pineda, J. M. Morales, and A. Jiménez-Cordero, “Data-driven screening of network constraints for unit commitment,” IEEE Transactions on Power Systems, vol. 35, no. 5, pp. 3695–3705, 2020.
  22. D. Deka and S. Misra, “Learning for dc-opf: Classifying active sets using neural nets,” in 2019 IEEE Milan PowerTech.   IEEE, 2019, pp. 1–6.
  23. T. Zhao, X. Pan, M. Chen, A. Venzke, and S. H. Low, “Deepopf+: A deep neural network approach for dc optimal power flow for ensuring feasibility,” in 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm).   IEEE, 2020, pp. 1–6.
  24. A. Velloso and P. Van Hentenryck, “Combining deep learning and optimization for preventive security-constrained dc optimal power flow,” IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3618–3628, 2021.
  25. Y. Chen, L. Zhang, and B. Zhang, “Learning to solve dcopf: A duality approach,” Electric Power Systems Research, vol. 213, p. 108595, 2022.
  26. L. Zhang, Y. Chen, and B. Zhang, “A convex neural network solver for dcopf with generalization guarantees,” IEEE Transactions on Control of Network Systems, vol. 9, no. 2, pp. 719–730, 2021.
  27. R. Dobbe, O. Sondermeijer, D. Fridovich-Keil, D. Arnold, D. Callaway, and C. Tomlin, “Toward distributed energy services: Decentralizing optimal power flow with machine learning,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1296–1306, 2019.
  28. X. Lei, Z. Yang, J. Yu, J. Zhao, Q. Gao, and H. Yu, “Data-driven optimal power flow: A physics-informed machine learning approach,” IEEE Transactions on Power Systems, vol. 36, no. 1, pp. 346–354, 2020.
  29. M. K. Singh, V. Kekatos, and G. B. Giannakis, “Learning to solve the ac-opf using sensitivity-informed deep neural networks,” IEEE Transactions on Power Systems, vol. 37, no. 4, pp. 2833–2846, 2021.
  30. X. Pan, M. Chen, T. Zhao, and S. H. Low, “Deepopf: A feasibility-optimized deep neural network approach for ac optimal power flow problems,” IEEE Systems Journal, vol. 17, no. 1, pp. 673–683, 2022.
  31. F. Hasan, A. Kargarian, and A. Mohammadi, “A survey on applications of machine learning for optimal power flow,” in 2020 IEEE Texas Power and Energy Conference (TPEC).   IEEE, 2020, pp. 1–6.
  32. Y. Zhang, P. M. Karve, and S. Mahadevan, “Power grid operational risk assessment using graph neural network surrogates,” arXiv preprint arXiv:2311.12309, 2023.
  33. V. Bolz, J. RueB, and A. Zell, “Power flow approximation based on graph convolutional networks,” in 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA).   IEEE, Dec. 2019.
  34. Q. Yang, A. Sadeghi, G. Wang, G. B. Giannakis, and J. Sun, “Power system state estimation using gauss-newton unrolled neural networks with trainable priors,” in 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm).   IEEE, Nov. 2020.
  35. D. Wang, K. Zheng, Q. Chen, G. Luo, and X. Zhang, “Probabilistic power flow solution with graph convolutional network,” in 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe).   IEEE, Oct. 2020.
  36. P. Xu, Y. Pei, X. Zheng, and J. Zhang, “A simulation-constraint graph reinforcement learning method for line flow control,” in 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2).   IEEE, Oct. 2020.
  37. W. Miao, H. Wu, P. Chen, and J. Jing, “Intelligent auxiliary operation and maintenance system of power communication network based on knowledge graph,” J. Phys. Conf. Ser., vol. 1684, no. 1, p. 012105, Nov. 2020.
  38. J. Q. James, D. J. Hill, L. Vo, and Y. Hou, “Synchrophasor recovery and prediction: A graph-based deep learning approach,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 7348–7359, 2019.
  39. C. Duan, W. Fang, L. Jiang, L. Yao, and J. Liu, “Distributionally robust chance-constrained approximate AC-OPF with wasserstein metric,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 4924–4936, Sep. 2018.
  40. X. Pan, M. Chen, T. Zhao, and S. H. Low, “Deepopf: A feasibility-optimized deep neural network approach for ac optimal power flow problems,” 2020.
  41. O. D. Montoya, W. Gil-González, and A. Garces, “Sequential quadratic programming models for solving the OPF problem in DC grids,” Electric Power Syst. Res., vol. 169, pp. 18–23, Apr. 2019.
  42. G. Li, C.-C. Liu, C. Mattson, and J. Lawarree, “Day-ahead electricity price forecasting in a grid environment,” IEEE Trans. Power Syst., vol. 22, no. 1, pp. 266–274, Feb. 2007.
  43. M. Aien, M. Fotuhi-Firuzabad, and M. Rashidinejad, “Probabilistic optimal power flow in correlated hybrid wind–photovoltaic power systems,” IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 130–138, Jan. 2014.
  44. M. B. Amor, E. Billette de Villemeur, M. Pellat, and P.-O. Pineau, “Influence of wind power on hourly electricity prices and GHG (greenhouse gas) emissions: Evidence that congestion matters from ontario zonal data,” Energy (Oxf.), vol. 66, pp. 458–469, Mar. 2014.
  45. J. Tastu, P. Pinson, and H. Madsen, “Space-time scenarios of wind power generation produced using a gaussian copula with parametrized precision matrix,” Technical University of Denmark, Tech. Rep., 2013.
  46. R. D. Zimmerman, C. E. Murillo-Sánchez, and D. Gan, “Matpower: A matlab power system simulation package,” Manual, Power Systems Engineering Research Center, Ithaca NY, vol. 1, pp. 10–7, 1997.
  47. X. Pan, T. Zhao, M. Chen, and S. Zhang, “Deepopf: A deep neural network approach for security-constrained dc optimal power flow,” IEEE Transactions on Power Systems, vol. 36, no. 3, pp. 1725–1735, 2020.
  48. S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel, “Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions,” IEEE Transactions on Power Systems, vol. 28, no. 4, pp. 4909–4917, 2013.
  49. C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, “Ac power flow data in matpower and qcqp format: itesla, rte snapshots, and pegase,” arXiv preprint arXiv:1603.01533, 2016.
  50. L. Thurner, A. Scheidler, F. Schäfer, J.-H. Menke, J. Dollichon, F. Meier, S. Meinecke, and M. Braun, “pandapower—an open-source python tool for convenient modeling, analysis, and optimization of electric power systems,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6510–6521, 2018.
  51. H. Wu and Z. Xu, “Fast dc optimal power flow based on deep convolutional neural network,” in 2022 IEEE 5th International Electrical and Energy Conference (CIEEC).   IEEE, 2022, pp. 2508–2512.

Summary

We haven't generated a summary for this paper yet.