Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New examples and partial classification of 15-vertex triangulations of the quaternionic projective plane (2311.11309v2)

Published 19 Nov 2023 in math.CO, cs.CG, and math.GT

Abstract: Brehm and K\"uhnel (1992) constructed three 15-vertex combinatorial 8-manifolds `like the quaternionic projective plane' with symmetry groups $\mathrm{A}_5$, $\mathrm{A}_4$, and $\mathrm{S}_3$, respectively. Gorodkov (2016) proved that these three manifolds are in fact PL homeomorphic to $\mathbb{HP}2$. Note that 15 is the minimal number of vertices of a combinatorial 8-manifold that is not PL homeomorphic to $S8$. In the present paper we construct a lot of new 15-vertex triangulations of $\mathbb{HP}2$. A surprising fact is that such examples are found for very different symmetry groups, including those not in any way related to the group $\mathrm{A}_5$. Namely, we find 19 triangulations with symmetry group $\mathrm{C}_7$, one triangulation with symmetry group $\mathrm{C}_6\times\mathrm{C}_2$, 14 triangulations with symmetry group $\mathrm{C}_6$, 26 triangulations with symmetry group $\mathrm{C}_5$, one new triangulation with symmetry group $\mathrm{A}_4$, and 11 new triangulations with symmetry group $\mathrm{S}_3$. Further, we obtain the following classification result. We prove that, up to isomorphism, there are exactly 75 triangulations of $\mathbb{HP}2$ with 15 vertices and symmetry group of order at least 4: the three Brehm-K\"uhnel triangulations and the 72 new triangulations listed above. On the other hand, we show that there are plenty of triangulations with symmetry groups $\mathrm{C}_3$ and $\mathrm{C}_2$, as well as the trivial symmetry group.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. P. Arnoux, A. Marin, “The Kühnel triangulation of the complex projective plane from the view point of complex crystallography (part II)”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45:2 (1991), 167–244.
  2. B. Bagchi, B. Datta, “On Kühnel’s 9-vertex complex projective plane”, Geom. Dedicata, 50 (1994), 1–13.
  3. B. Bagchi, B. Datta, “A short proof of the uniqueness of Kühnel’s 9-vertex complex projective plane”, Adv. Geom., 1 (2001), 157–163.
  4. B. Bagchi, B. Datta, “Non-existence of 6666-dimensional pseudomanifolds with complementarity”, Adv. Geom., 4 (2004), 537–550.
  5. U. Brehm, W. Kühnel, “Combinatorial manifolds with few vertices”, Topology, 26:4 (1987), 465–473.
  6. U. Brehm, W. Kühnel, “15-vertex triangulations of an 8-manifold”, Math. Ann., 294 (1992), 167–193.
  7. B. Datta, “Pseudomanifolds with complementarity”, Geom. Dedicata, 73 (1998), 143–155.
  8. J. Eells, N. H. Kuiper, “Manifolds which are like projective planes”, Publ. Math. Inst. Hautes Etud. Sci., 14 (1962), 181–222.
  9. A. A. Gaifullin, “Local formulae for combinatorial Pontryagin classes”, Izv. RAN, Ser. Matem., 68:5 (2004), 13–66 (in Russian); English transl.: Izv. Math., 68:5 (2004), 861–910.
  10. A. A. Gaifullin, “Computation of characteristic classes of a manifold from a triangulation of it”, Uspekhi Mat. Nauk, 60:4(364) (2005), 37–66 (in Russian); English transl.: Russian Math. Surveys, 60:4 (2005), 615–644.
  11. A. A. Gaifullin, “Configuration spaces, bistellar moves, and combinatorial formulae for the first Pontryagin class”, Trudy MIAN, 268 (2010), 76–93 (in Russian); English transl.: Proc. Steklov Inst. Math., 268 (2010), 70–86; arXiv: 0912.3933.
  12. A. A. Gaifullin, “634634634634 vertex-transitive and more than 10103superscript1010310^{103}10 start_POSTSUPERSCRIPT 103 end_POSTSUPERSCRIPT non-vertex-transitive 27272727-vertex triangulations of manifolds like the octonionic projective plane”, Izv. Math., 88:3 (2024) (to appear), arXiv:2207.08507.
  13. A. A. Gaifullin, “On possible symmetry groups of 27-vertex triangulations of manifolds like the octonionic projective plane”, Sb. Math., 215:7 (2024) (to appear), arXiv:2310.16679.
  14. A. A. Gaifullin, D. A. Gorodkov, “An explicit local combinatorial formula for the first Pontryagin class”, Uspekhi Mat. Nauk, 74:6(450) (2019), 161–162 (in Russian); English transl.: Russian Math. Surveys, 74:6 (2019), 1120–1122.
  15. D. A. Gorodkov, “A minimal triangulation of the quaternionic projective plane”, Uspekhi Matem. Nauk 71:6(432) (2016), 159–160 (in Russian); English transl.: Russian Math. Surveys, 71:6 (2016), 1140–1142.
  16. D. Gorodkov, “A 15-vertex triangulation of the quaternionic projective plane”, Discrete Comput. Geom., 62:2 (2019), 348–373; arXiv:1603.05541.
  17. V. Klee, “A combinatorial analogue of Poincaré’s duality theorem”, Canad. J. Math., 16 (1964), 517–531.
  18. E. G. Köhler, F. H. Lutz, “Triangulated manifolds with few vertices: vertex-transitive triangulations I”, 74 pp., 2005; arXiv:math/0506520.
  19. L. Kramer, “Projective planes and their look-alikes”, J. Differential Geometry, 64 (2003), 1–55; arXiv:math/0206145.
  20. W. Kühnel, T. F. Banchoff, “The 9-vertex complex projective plane”, Math. Intelligencer, 5:3 (1983), 11–22.
  21. W. Kühnel, G. Lassmann, “The unique 3-neighborly 4-manifold with few vertices”, J. Comb. Theory, Ser. A, 35 (1983), 173–184.
  22. F. H. Lutz, “Triangulated manifolds with few vertices: combinatorial manifolds”, 37 pp., 2005, arXiv:math/0506372.
  23. F. H. Lutz, “Combinatorial 3333-manifolds with 10101010 vertices”, Beitr. Algebra Geom., 49:1 (2008), 97–106, arXiv:math/0604018.
  24. J. Milnor, “On manifolds homeomorphic to the 7-sphere”, Ann. Math., 64 (1956), 399–405.
  25. I. Novik, “Upper bound theorems for homology manifolds”, Isr. J. Math., 108:1 (1998), 45–82.
  26. P. A. Smith, “Transformations of finite period. II”, Ann. Math., 40:3 (1939), 690–711.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com