Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LUNA-CIM: Lookup Table based Programmable Neural Processing in Memory (2311.10581v1)

Published 17 Nov 2023 in cs.AR and cs.ET

Abstract: This paper presents a novel approach for performing computations using Look-Up Tables (LUTs) tailored specifically for Compute-in-Memory applications. The aim is to address the scalability challenges associated with LUT-based computation by reducing storage requirements and energy consumption while capitalizing on the faster and more energy-efficient nature of look-up methods compared to conventional mathematical computations. The proposed method leverages a divide and conquer (D&C) strategy to enhance the scalability of LUT-based computation. By breaking down high-precision multiplications into lower-precision operations, the technique achieves significantly lower area overheads, up to approximately 3.7 times less than conventional LUT-based approaches, without compromising accuracy. To validate the effectiveness of the proposed method, extensive simulations using TSMC 65 nm technology were conducted. The experimental analysis reveals that the proposed approach accounts for less than 0.1\% of the total energy consumption, with only a 32\% increase in area overhead. These results demonstrate considerable improvements achieved in energy efficiency and area utilization through the novel low-energy, low-area-overhead LUT-based computation in an SRAM array.

Citations (1)

Summary

We haven't generated a summary for this paper yet.