Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Scalable simulation-based inference for implicitly defined models using a metamodel for Monte Carlo log-likelihood estimator (2311.09446v3)

Published 15 Nov 2023 in stat.ME, math.ST, and stat.TH

Abstract: Models implicitly defined through a random simulator of a process have become widely used in scientific and industrial applications in recent years. However, simulation-based inference methods for such implicit models, like approximate Bayesian computation (ABC), often scale poorly as data size increases. We develop a scalable inference method for implicitly defined models using a metamodel for the Monte Carlo log-likelihood estimator derived from simulations. This metamodel characterizes both statistical and simulation-based randomness in the distribution of the log-likelihood estimator across different parameter values. Our metamodel-based method quantifies uncertainty in parameter estimation in a principled manner, leveraging the local asymptotic normality of the mean function of the log-likelihood estimator. We apply this method to construct accurate confidence intervals for parameters of partially observed Markov process models where the Monte Carlo log-likelihood estimator is obtained using the bootstrap particle filter. We numerically demonstrate that our method enables accurate and highly scalable parameter inference across several examples, including a mechanistic compartment model for infectious diseases.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)