Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the k-th Eigenvalue of Symmetric $H^2$-Matrices (2311.08618v1)

Published 15 Nov 2023 in math.NA and cs.NA

Abstract: The numerical solution of eigenvalue problems is essential in various application areas of scientific and engineering domains. In many problem classes, the practical interest is only a small subset of eigenvalues so it is unnecessary to compute all of the eigenvalues. Notable examples are the electronic structure problems where the $k$-th smallest eigenvalue is closely related to the electronic properties of materials. In this paper, we consider the $k$-th eigenvalue problems of symmetric dense matrices with low-rank off-diagonal blocks. We present a linear time generalized LDL decomposition of $\mathcal{H}2$ matrices and combine it with the bisection eigenvalue algorithm to compute the $k$-th eigenvalue with controllable accuracy. In addition, if more than one eigenvalue is required, some of the previous computations can be reused to compute the other eigenvalues in parallel. Numerical experiments show that our method is more efficient than the state-of-the-art dense eigenvalue solver in LAPACK/ScaLAPACK and ELPA. Furthermore, tests on electronic state calculations of carbon nanomaterials demonstrate that our method outperforms the existing HSS-based bisection eigenvalue algorithm on 3D problems.

Summary

We haven't generated a summary for this paper yet.