Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High Performance Solution of Skew-symmetric Eigenvalue Problems with Applications in Solving the Bethe-Salpeter Eigenvalue Problem (1912.04062v2)

Published 9 Dec 2019 in math.NA, cs.DS, cs.MS, and cs.NA

Abstract: We present a high-performance solver for dense skew-symmetric matrix eigenvalue problems. Our work is motivated by applications in computational quantum physics, where one solution approach to solve the so-called Bethe-Salpeter equation involves the solution of a large, dense, skew-symmetric eigenvalue problem. The computed eigenpairs can be used to compute the optical absorption spectrum of molecules and crystalline systems. One state-of-the art high-performance solver package for symmetric matrices is the ELPA (Eigenvalue SoLvers for Petascale Applications) library. We extend the methods available in ELPA to skew-symmetric matrices. This way, the presented solution method can benefit from the optimizations available in ELPA that make it a well-established, efficient and scalable library, such as GPU support. We compare performance and scalability of our method to the only available high-performance approach for skew-symmetric matrices, an indirect route involving complex arithmetic. In total, we achieve a performance that is up to 3.67 higher than the reference method using Intel's ScaLAPACK implementation. The runtime to solve the Bethe-Salpeter-Eigenvalue problem can be improved by a factor of 10. Our method is freely available in the current release of the ELPA library.

Citations (11)

Summary

We haven't generated a summary for this paper yet.