Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Aware Gradient Compression for FL in Communication-Constrained Mobile Computing (2311.07324v3)

Published 13 Nov 2023 in cs.LG

Abstract: Federated Learning (FL) in mobile environments faces significant communication bottlenecks. Gradient compression has proven as an effective solution to this issue, offering substantial benefits in environments with limited bandwidth and metered data. Yet, it encounters severe performance drops in non-IID environments due to a one-size-fits-all compression approach, which does not account for the varying data volumes across workers. Assigning varying compression ratios to workers with distinct data distributions and volumes is therefore a promising solution. This work derives the convergence rate of distributed SGD with non-uniform compression, which reveals the intricate relationship between model convergence and the compression ratios applied to individual workers. Accordingly, we frame the relative compression ratio assignment as an $n$-variable chi-squared nonlinear optimization problem, constrained by a limited communication budget. We propose DAGC-R, which assigns conservative compression to workers handling larger data volumes. Recognizing the computational limitations of mobile devices, we propose the DAGC-A, which is computationally less demanding and enhances the robustness of compression in non-IID scenarios. Our experiments confirm that the DAGC-R and DAGC-A can speed up the training speed by up to $25.43\%$ and $16.65\%$ compared to the uniform compression respectively, when dealing with highly imbalanced data volume distribution and restricted communication.

Citations (1)

Summary

We haven't generated a summary for this paper yet.