Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network-assist free self-testing of genuine multipartite entangled states (2311.07266v2)

Published 13 Nov 2023 in quant-ph and cs.CR

Abstract: Self-testing is a method to certify quantum states and measurements in a device-independent way. The device-independent certification of quantum properties is purely based on input-output measurement statistics of the involved devices with minimal knowledge about their internal workings. Bipartite pure entangled states can be self-tested, but, in the case of multipartite pure entangled states, the answer is not so straightforward. Nevertheless, \v{S}upi\'{c} et al. recently introduced a novel self-testing method for any pure entangled quantum state, which leverages network assistance and relies on bipartite entangled measurements. Hence, their scheme loses the true device-independent flavor of self-testing. In this regard, we provide a self-testing scheme for genuine multipartite pure entangle states in the true sense by employing a generalized Hardy-type non-local argument. Our scheme involves only local operations and classical communications and does not depend on bipartite entangled measurements and is free from any network assistance. In addition, we provide the device-independent bound of the maximum probability of success for generalized Hardy-type nonlocality argument.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. U. Fano, Description of states in quantum mechanics by density matrix and operator techniques, Reviews of modern physics 29, 74 (1957).
  2. M. A. Nielsen and I. Chuang, Quantum computation and quantum information (2002).
  3. K. Vogel and H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Physical Review A 40, 2847 (1989).
  4. R. Colbeck, Quantum and relativistic protocols for secure multi-party computation, arXiv preprint arXiv:0911.3814  (2009).
  5. V. Scarani, The device-independent outlook on quantum physics (lecture notes on the power of bell’s theorem), arXiv preprint arXiv:1303.3081  (2013).
  6. S. Pironio, V. Scarani, and T. Vidick, Focus on device independent quantum information, New J. Phys 18, 100202 (2016).
  7. A. Acín and M. Navascués, Black box quantum mechanics, Quantum [Un] Speakables II: Half a Century of Bell’s Theorem , 307 (2017).
  8. J. S. Bell, On the einstein podolsky rosen paradox, Physics Physique Fizika 1, 195 (1964).
  9. S. Popescu and D. Rohrlich, Which states violate bell’s inequality maximally?, Physics Letters A 169, 411 (1992).
  10. S. J. Summers and R. Werner, Bell’s inequalities and quantum field theory. i. general setting, Journal of Mathematical Physics 28, 2440 (1987).
  11. D. Mayers and A. Yao, Self testing quantum apparatus, Quantum Info. Comput. 4, 273–286 (2004).
  12. M. McKague, T. H. Yang, and V. Scarani, Robust self-testing of the singlet, Journal of Physics A: Mathematical and Theoretical 45, 455304 (2012).
  13. C. Bamps and S. Pironio, Sum-of-squares decompositions for a family of clauser-horne-shimony-holt-like inequalities and their application to self-testing, Physical Review A 91, 052111 (2015).
  14. Y. Wang, X. Wu, and V. Scarani, All the self-testings of the singlet for two binary measurements, New Journal of Physics 18, 025021 (2016).
  15. J. Kaniewski, Self-testing of binary observables based on commutation, Physical Review A 95, 062323 (2017).
  16. T. H. Yang and M. Navascués, Robust self-testing of unknown quantum systems into any entangled two-qubit states, Physical Review A 87, 050102 (2013).
  17. J. Kaniewski, Analytic and nearly optimal self-testing bounds for the clauser-horne-shimony-holt and mermin inequalities, Physical review letters 117, 070402 (2016).
  18. A. Coladangelo, K. T. Goh, and V. Scarani, All pure bipartite entangled states can be self-tested, Nature communications 8, 15485 (2017).
  19. I. Šupić and J. Bowles, Self-testing of quantum systems: a review, Quantum 4, 337 (2020).
  20. K. F. Pál, T. Vértesi, and M. Navascués, Device-independent tomography of multipartite quantum states, Physical Review A 90, 042340 (2014).
  21. R. Rahaman, M. Wieśniak, and M. Żukowski, True multipartite entanglement hardy test, Physical Review A 90, 062338 (2014).
  22. R. Rabelo, L. Y. Zhi, and V. Scarani, Device-independent bounds for hardy’s experiment, Physical Review Letters 109, 180401 (2012).
  23. L. Masanes, Asymptotic violation of bell inequalities and distillability, Physical review letters 97, 050503 (2006).
  24. M. Navascués, S. Pironio, and A. Acín, A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations, New Journal of Physics 10, 073013 (2008).

Summary

We haven't generated a summary for this paper yet.