Local Test for Unitarily Invariant Properties of Bipartite Quantum States (2404.04599v2)
Abstract: We study the power of local test for bipartite quantum states. Our central result is that, for properties of bipartite pure states, unitary invariance on one part implies an optimal (over all global testers) local tester acting only on the other part. This suggests a canonical local tester for entanglement spectra (i.e., Schmidt coefficients), and reveals that purified samples offer no advantage in property testing of mixed states. As applications, we show new sample lower bounds, e.g.: - The first general lower bound $\Omega(r/\epsilon2)$ for testing whether the Schmidt rank of a bipartite state is at most $r$ or $\epsilon$-far, settling an open question raised in Montanaro and de Wolf (ToC 2016). - A lower bound $\Omega((\sqrt n+\sqrt r)\cdot\sqrt r/\epsilon2)$ for testing whether an $n$-partite state is a matrix product state of bond dimension $r$ or $\epsilon$-far, improving the prior lower bound $\Omega(\sqrt n/\epsilon2)$ by Soleimanifar and Wright (SODA 2022) and $\Omega(\sqrt r)$ by Aaronson et al. (ITCS 2024). Further, when perfect completeness is required, we provide a matching lower bound $\Omega(r2/\epsilon2)$ with respect to $r$ and $\epsilon$. - A matching lower bound $\Omega(d/\epsilon2)$ for testing whether a $d$-dimensional bipartite state is maximally entangled or $\epsilon$-far, showing that the algorithm of O'Donnell and Wright (STOC 2015) is optimal for this task. Beyond sample complexity, we also contribute new query lower bounds: - A query lower bound $\tilde\Omega(\sqrt{d/\Delta})$ for the $d$-dimensional entanglement entropy problem with gap $\Delta$, improving the prior best $\Omega(\sqrt[4]{d})$ by She and Yuen (ITCS 2023) and $\tilde\Omega(1/\sqrt\Delta)$ by Wang and Zhang (2023) and Weggemans (2024). Further, our central result can be extended when the tested state is mixed: one-way LOCC is sufficient to realize the optimal tester.
- Quantum pseudoentanglement. In Proceedings of the 15th Innovations in Theoretical Computer Science Conference, pages 2:1–2:21, 2024. doi:10.4230/LIPIcs.ITCS.2024.2.
- Quantum algorithmic measurement. Nature communications, 13(1):887, 2022. doi:10.1038/s41467-021-27922-0.
- Local tests of global entanglement and a counterexample to the generalized area law. In Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science, pages 246–255, 2014. doi:10.1109/FOCS.2014.34.
- Distributed quantum inner product estimation. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 44–51, 2022. doi:10.1145/3519935.3519974.
- Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70(13):1895, 1993. doi:10.1103/PhysRevLett.70.1895.
- Concentrating partial entanglement by local operations. Physical Review A, 53(4):2046, 1996. doi:10.1103/PhysRevA.53.2046.
- Simulating Hamiltonian dynamics with a truncated Taylor series. Physical Review Letters, 114(9):090502, 2015. doi:10.1103/PhysRevLett.114.090502.
- Hamiltonian property testing. ArXiv e-prints, 2024. arXiv:2403.02968.
- Quantum amplitude amplification and estimation. In Samuel J. Lomonaco, Jr. and Howard E. Brandt, editors, Quantum Computation and Information, volume 305 of Contemporary Mathematics, pages 53–74. American Mathematical Society, 2002. doi:10.1090/conm/305/05215.
- Quantum state certification. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 503–514, 2019. doi:10.1145/3313276.3316344.
- Sergey Bravyi. Efficient algorithm for a quantum analogue of 2-SAT. In Kazem Mahdavi, Deborah Koslover, and Leonard L. Brown, III, editors, Cross Disciplinary Advances in Quantum Computing, volume 536 of Contemporary Mathematics, pages 33–48. American Mathematical Society, 2011. doi:10.1090/conm/536/10552.
- Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters, 69(20):2881, 1992. doi:10.1103/PhysRevLett.69.2881.
- Exponential separations between learning with and without quantum memory. In Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science, pages 574–585, 2022. doi:10.1109/FOCS52979.2021.00063.
- Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem. In Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Science, pages 598–609, 2007. doi:10.1007/978-3-540-70918-3_51.
- Entanglement spectrum in one-dimensional systems. Physical Review A, 78(3):032329, 2008. doi:10.1103/PhysRevA.78.032329.
- Everything you always wanted to know about LOCC (but were afraid to ask). Communications in Mathematical Physics, 328:303–326, 2014. doi:10.1007/s00220-014-1953-9.
- Hamiltonian simulation using linear combinations of unitary operations. Quantum Information and Computation, 12(11–12):901–924, 2012. doi:10.26421/QIC12.11-12-1.
- Unitarity estimation for quantum channels. IEEE Transactions on Information Theory, 69(8):303–326, 2023. doi:10.1109/TIT.2023.3263645.
- Introduction to Representation Theory, volume 59 of Student Mathematical Library. American Mathematical Society, 2011. doi:10.1090/stml/059.
- Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10):777, 1935. doi:10.1103/PhysRev.47.777.
- The approximation of one matrix by another of lower rank. Psychometrika, 1(3):211–218, 1936. doi:10.1007/BF02288367.
- Quantum channel certification with incoherent measurements. In Proceedings of the 36th Conference on Learning Theory, pages 1822–1884, 2023. URL: https://proceedings.mlr.press/v195/fawzi23a.html.
- Representation Theory: A First Course, volume 129 of Graduate Texts in Mathematics. Springer, 2013. doi:10.1007/978-1-4612-0979-9.
- Christopher A. Fuchs and Jeroen van de Graaf. Cryptographic distinguishability measures for quantum-mechanical states. IEEE Transactions on Information Theory, 45(4):1216–1227, 1999. doi:10.1109/18.761271.
- Quantum 3-SAT is 𝖰𝖬𝖠1subscript𝖰𝖬𝖠1\mathsf{QMA}_{1}sansserif_QMA start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT-complete. SIAM Journal on Computing, 45(3):1080–1128, 2016. doi:10.1137/140957056.
- Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pages 212–219, 1996. doi:10.1145/237814.237866.
- Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 193–204, 2019. doi:10.1145/3313276.3316366.
- Aram W. Harrow. The church of the symmetric subspace. ArXiv e-prints, 2013. arXiv:1308.6595.
- Carl W. Helstrom. Detection theory and quantum mechanics. Information and Control, 10(3):254–291, 1967. doi:10.1016/S0019-9958(67)90302-6.
- Quantum entanglement. Reviews of Modern Physics, 81(2):865, 2009. doi:10.1103/RevModPhys.81.865.
- Testing product states, quantum Merlin-Arthur games and tensor optimization. In Proceedings of the 51st IEEE Annual Symposium on Foundations of Computer Science, pages 633–642, 2010. doi:10.1109/FOCS.2010.66.
- A study of LOCC-detection of a maximally entangled state using hypothesis testing. Journal of Physics A: Mathematical and General, 39(46):14427, 2006. doi:10.1088/0305-4470/39/46/013.
- Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13–30, 1963. doi:10.1080/01621459.1963.10500830.
- Alexander S. Holevo. Statistical decision theory for quantum systems. Journal of Multivariate Analysis, 3(4):337–394, 1973. doi:10.1016/0047-259X(73)90028-6.
- Roger Howe. (𝐺𝐿n,𝐺𝐿m)subscript𝐺𝐿𝑛subscript𝐺𝐿𝑚(\mathit{GL}_{n},\mathit{GL}_{m})( italic_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_GL start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT )-duality and symmetric plethysm. In Proceedings of the Indian Academy of Sciences-Mathematical Sciences, volume 97, pages 85–109, 1987. doi:10.1007/BF02837817.
- Dimension independent disentanglers from unentanglement and applications. ArXiv e-prints, 2024. arXiv:2402.15282.
- Alexander A. Kirillov. An Introduction to Lie Groups and Lie Algebras, volume 113 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2008. doi:10.1017/CBO9780511755156.
- Topological entanglement entropy. Physical Review Letters, 96(11):110404, 2006. doi:10.1103/PhysRevLett.96.110404.
- Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states. Physical Review Letters, 101(1):010504, 2008. doi:10.1103/PhysRevLett.101.010504.
- Detecting topological order in a ground state wave function. Physical Review Letters, 96(11):110405, 2006. doi:10.1103/PhysRevLett.96.110405.
- Separation between entanglement criteria and entanglement detection protocols. ArXiv e-prints, 2024. arXiv:2403.01664.
- Keiji Matsumoto. Test of purity by LOCC. ArXiv e-prints, 2010. arXiv:1009.3121.
- A survey of quantum property testing. In Theory of Computing Library, number 7 in Graduate Surveys, pages 1–81. University of Chicago, 2016. doi:10.4086/toc.gs.2016.007.
- Universal distortion-free entanglement concentration. Physical Review A, 75(6):062338, 2007. doi:10.1103/PhysRevA.75.062338.
- Concurrence of mixed multipartite quantum states. Physical Review Letters, 95(26):260502, 2005. doi:10.1103/PhysRevLett.95.260502.
- Quantum spectrum testing. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing, pages 529–538, 2015. doi:10.1145/2746539.2746582.
- Matrix product state representations. Quantum Information and Computation, 7(5–6):401–430, 2007. doi:10.26421/QIC7.5-6-1.
- Optimal verification of entangled states with local measurements. Physical Review Letters, 120(17):170502, 2018. doi:10.1103/PhysRevLett.120.170502.
- Entanglement spectrum of a topological phase in one dimension. Physical Review B, 81(6):064439, 2010. doi:10.1103/PhysRevB.81.064439.
- Jean-Pierre Serre. Linear Representations of Finite Groups, volume 42 of Graduate Texts in Mathematics. Springer, 1977. doi:10.1007/978-1-4684-9458-7.
- Testing matrix product states. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1679–1701, 2022. doi:10.1137/1.9781611977073.68.
- Unitary property testing lower bounds by polynomials. In Proceedings of the 14th Innovations in Theoretical Computer Science Conference, pages 96:1–96:17, 2023. doi:10.4230/LIPIcs.ITCS.2023.96.
- Constantino Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(2):479–487, 1988. doi:10.1007/BF01016429.
- John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018. doi:10.1017/9781316848142.
- Jordi Weggemans. Lower bounds for unitary property testing with proofs and advice. ArXiv e-prints, 2024. arXiv:2401.07912.
- Optimal verification of two-qubit pure states. Physical Review A, 100(3):032315, 2019. doi:10.1103/PhysRevA.100.032315.
- Mark M. Wilde. Quantum Information Theory. Cambridge University Press, 2013. doi:10.1017/CBO9781139525343.
- Quantum lower bounds by sample-to-query lifting. ArXiv e-prints, 2023. arXiv:2308.01794.
- Time-efficient quantum entropy estimator via samplizer. ArXiv e-prints, 2024. arXiv:2401.09947.
- Entanglement entropy and entanglement spectrum of the Kitaev model. Physical Review Letters, 105(8):080501, 2010. doi:10.1103/PhysRevLett.105.080501.
- Efficient verification of pure quantum states in the adversarial scenario. Physical Review Letters, 123(26):260504, 2019. doi:10.1103/PhysRevLett.123.260504.