Papers
Topics
Authors
Recent
2000 character limit reached

Best Complete Approximations of Preference Relations

Published 11 Nov 2023 in econ.TH, cs.DM, and math.CO | (2311.06641v1)

Abstract: We investigate the problem of approximating an incomplete preference relation $\succsim$ on a finite set by a complete preference relation. We aim to obtain this approximation in such a way that the choices on the basis of two preferences, one incomplete, the other complete, have the smallest possible discrepancy in the aggregate. To this end, we use the top-difference metric on preferences, and define a best complete approximation of $\succsim$ as a complete preference relation nearest to $\succsim$ relative to this metric. We prove that such an approximation must be a maximal completion of $\succsim$, and that it is, in fact, any one completion of $\succsim$ with the largest index. Finally, we use these results to provide a sufficient condition for the best complete approximation of a preference to be its canonical completion. This leads to closed-form solutions to the best approximation problem in the case of several incomplete preference relations of interest.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.