Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 19 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 179 tok/s Pro
2000 character limit reached

Some inflationary models under the light of Planck 2018 results (2311.04683v2)

Published 8 Nov 2023 in gr-qc

Abstract: In this work we study four well-known inflationary scenarios that are reported by the most recent Planck observations: Natural inflation, Hilltop quartic inflation, Starobinsky inflationary model, and Large field power-law potentials $V(\phi)\sim \phi{p}$, considering $p=\sfrac{2}{3}, \sfrac{4}{3}$. The analysis is done using both the slow-roll approximation and the numerical solution to the background and perturbation equations. We show that the numerical solution improved the precision of these models with respect to the contour plot $r$ vs. $n_\sca$, having a lower $r$ in each model compared to the value calculated from the slow-roll approximation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. A. Albrecht and P. J. Steinhardt. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett., 48:1220, 1982.
  2. A. H. Guth. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D, 23:347, 1981.
  3. A. D. Linde. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B, 108:389, 1982.
  4. A. A. Starobinsky. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B, 91:99, 1980.
  5. K. Sato. First Order Phase Transition of a Vacuum and Expansion of the Universe. Mon. Not. Roy. Astron. Soc., 195:467, 1981.
  6. S. Weinberg. Cosmology. OUP Oxford, 2008.
  7. Inflationary cosmology: from theory to observations. Rev. Mex. Fis. E, 17:73, 2020.
  8. J. Preskill. Cosmological Production of Superheavy Magnetic Monopoles. Phys. Rev. Lett., 43:1365, 1979.
  9. Recent Advances on Inflation. Symmetry, 15:1701, 2023.
  10. J. Martin. Inflationary perturbations: The cosmological Schwinger effect. Lecture Notes in Physics, 738:193, 2008.
  11. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys., 641:A10, 2020.
  12. S. Habib and A. Heinen and K. Heitmann and G. Jungman. Inflationary Perturbations and Precision Cosmology. Phys. Rev. D, 71:043518, 2005.
  13. Tracking the Multifield Dynamics with Cosmological Data: A Monte Carlo approach. JCAP, 12:014, 2023.
  14. Inflationary models constrained by reheating. arXiv:1404.6704, 2023.
  15. Encyclopaedia Inflationaris. Phys. Dark Univ., 5–6:75, 2014.
  16. Inflation after WMAP3: confronting the slow–roll and exact power spectra with CMB data. JCAP, 24:009, 2006.
  17. Natural inflation with pseudo Nambu–Goldstone bosons. Phys. Rev. Lett., 65:3233, 1990.
  18. Natural inflation: Particle physics models, power–law spectra for large–scale structure, and constraints from the Cosmic Background Explorer. Phys. Rev. D, 47:426, 1993.
  19. L. Boubekeur and D. H. Lyth. Hilltop inflation. JCAP, 07:010, 2005.
  20. A. A. Starobinsky. A new type of isotropic cosmological models without singularity. Phys. Lett. B, 91:99, 1980.
  21. A. D. Linde. Chaotic Inflation. Phys. Rev. D, 129B:177, 1983.
  22. Cosmological inflation and large–scale structure. Cambridge University Press, 2000.
  23. Observing the Inflaton Potential. Phys. Rev. Letts, 71, 1993.
  24. Inflation and the scale dependent spectral index: prospects and strategies. JCAP, 02:021, 2011.
  25. H. V. Ragavendra, and L. Sriramkumar. Observational Imprints of Enhanced Scalar Power on Small Scales in Ultra Slow Roll Inflation and Associated Non–Gaussianities . Galaxies, 11, 2023.
  26. Inflationary Potential as seen from Different Angles: Model Compatibility from Multiple CMB Missions. arXiv:2305.15378v1, 2023.
  27. Constraints on the tensor–to–scalar ratio for non–power–law models. JCAP, 08:001, 2013.
  28. S. Das and R. O. Ramos. Running and Running of the Running of the Scalar Spectral Index in Warm Inflation. Universe, 9:76, 2023.
  29. Exploring cosmic origins with CORE: Inflation. JCAP, 04:016, 2018.
  30. K. Freese, and W. H. Kinney. Natural inflation: consistency with cosmic microwave background observations of Planck and BICEP2. JCAP, 03:044, 2015.
  31. N. K. Stein, and W. H. Kinney. Natural inflation after Plack 2018. JCAP, 01:022, 2022.
  32. Observational constrainsts on warm natural inflation. JCAP, 03:002, 2023.
  33. J. L. Cook. Primordial Black Hole Production in Natural and Hilltop Inflation. JCAP, 07:031, 2023.
  34. G. Germán. Quartic hilltop inflation revisited. JCAP, 02:034, 2021.
  35. N. K. Stein, and W. H. Kinney. Simple single–field inflation models with arbitrarily small tensor/scalar ratio. JCAP, 03:027, 2022.
  36. Regularization of Single Field Inflation Models. Phys. Rev. D, 2023.
  37. H. G. Lillepalu and A. Racioppi. Generalized Hilltop Inflation. EPJ Plus, 138:894, 2023.
  38. An analytic treatment of quartic hilltop inflation. Phys. Lett. B, 809:135688, 2020.
  39. On hilltop and brane inflation after Planck. JCAP, 09:030, 2019.
  40. Hill crossing during preheating after hilltop inflation. JCAP, 06:009, 2015.
  41. Warm hilltop inflation. Phys. Rev. D, 77:123527, 2008.
  42. C. Rojas. Study of scalar and tensor power spectra in the generalized Starobinsky inflationary model using semiclassical methods. Astroparticle Physics, 143:102745, 2022.
  43. J. Martin. Cosmic Inflation: Trick or Treat? arXiv:1902.05286, 2019.
  44. E. Di Valentino and L. Mersini–Houghton. Testing predictions of the quantum landscape multiverse 1: the Starobinsky inflationary potential. JCAP, 2, 2017.
  45. Gravity waves and linear inflation from axion monodromy. Phys. Rev. D, 82:046003, 2010.
  46. The powers of monodromy. JHEP, 09:123, 2014.
  47. Monodromy in the CMB: Gravity waves and string inflation. Phys. Rev. D, 78:106003, 2008.
  48. C. Rojas and V. M. Villalba. Computation of inflationary cosmological perturbations in chaotic inflationary scenarios using the phase–integral method. Phys. Rev. D, 79:103502, 2009.
  49. C. Rojas and V. M. Villalba. Computation of the power spectrum in chaotic 14⁢λ⁢ϕ414𝜆superscriptitalic-ϕ4\frac{1}{4}\lambda\phi^{4}divide start_ARG 1 end_ARG start_ARG 4 end_ARG italic_λ italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT inflation. JCAP, 003:1, 2012.
  50. Completing natural inflation. JCAP, 005, 2005.
  51. The present and future of the most favoured inflationary models after Planck 2015. JCAP, 020, 2016.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com