2000 character limit reached
Hamiltonian birefringence and Born-Infeld limits (2311.04278v3)
Published 7 Nov 2023 in hep-th
Abstract: Using Hamiltonian methods, we find six relativistic theories of nonlinear electrodynamics for which plane wave perturbations about a constant uniform background are not birefringent. All have the same conformal strong-field limit to Bialynicki-Birula (BB) electrodynamics, but only four avoid superluminal propagation: Born-Infeld (BI), its non-conformal ``extreme'' limits (electric and magnetic) and the conformal BB limit. The quadratic dispersion relation of BI is shown to degenerate in the extreme limits to a pair of linear relations, which become identical in the BB limit.
- J. G. Russo and P. K. Townsend, “Nonlinear electrodynamics without birefringence,” JHEP 01 (2023), 039 [arXiv:2211.10689 [hep-th]].
- G. Boillat, “Vitesses des ondes électrodynamiques et lagrangiens exceptionnels,” Ann. Inst. H. Poincare Phys. Theor. 5 (1966) no.3, 217-225;
- G. Boillat, “Nonlinear electrodynamics - Lagrangians and equations of motion,” J. Math. Phys. 11 (1970) no.3, 941-951
- J. Plebański, “Lectures on non-linear electrodynamics”, (The Niels Bohr Institute and NORDITA, Copenhagen, 1970).
- I. Bialynicki-Birula, “Nonlinear Electrodynamics: Variations on a theme by Born and Infeld”, in Quantum Theory of Particles and Fields, eds. B. Jancewicz and J. Lukierski, (World Scientific, 1983) pp. 31-48.
- M. Born and L. Infeld, “Foundations of the new field theory,” Proc. Roy. Soc. Lond. A 144 (1934) no.852, 425-451
- J. G. McCarthy and O. Sarioglu, “Shock free wave propagation in gauge theories,” Int. J. Theor. Phys. 39 (2000), 159-182 [arXiv:math-ph/9902004 [math-ph]].
- S. Deser, J. G. McCarthy and O. Sarioglu, “’Good propagation’ constraints on dual invariant actions in electrodynamics and on massless fields,” Class. Quant. Grav. 16 (1999), 841-847 [arXiv:hep-th/9809153 [hep-th]].
- I. Bialynicki-Birula, “Field theory of photon dust,” Acta Phys. Polon. B 23 (1992), 553-559.
- I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “Trirefringence and the M5-brane,” [arXiv:2303.11485 [hep-th]].
- M. Perry and J. H. Schwarz, “Interacting chiral gauge fields in six-dimensions and Born-Infeld theory,” Nucl. Phys. B 489 (1997), 47-64 [arXiv:hep-th/9611065 [hep-th]].
- I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “On p-form gauge theories and their conformal limits,” JHEP 03 (2021), 022 [arXiv:2012.09286 [hep-th]].
- I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “A non-linear duality-invariant conformal extension of Maxwell’s equations,” Phys. Rev. D 102 (2020), 121703 [arXiv:2007.09092 [hep-th]].
- M. Born, “Modified field equations with a finite radius of the electron,” Nature 132 (1933) no.3329, 282.1
- I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend, “ModMax meets Susy,” JHEP 10 (2021), 031 [arXiv:2106.07547 [hep-th]].
- L. Mezincescu and P. K. Townsend, “DBI in the IR,” J. Phys. A 53 (2020) no.4, 044002 [arXiv:1907.06036 [hep-th]].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.