Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dense Video Captioning: A Survey of Techniques, Datasets and Evaluation Protocols (2311.02538v1)

Published 5 Nov 2023 in cs.CV and cs.AI

Abstract: Untrimmed videos have interrelated events, dependencies, context, overlapping events, object-object interactions, domain specificity, and other semantics that are worth highlighting while describing a video in natural language. Owing to such a vast diversity, a single sentence can only correctly describe a portion of the video. Dense Video Captioning (DVC) aims at detecting and describing different events in a given video. The term DVC originated in the 2017 ActivityNet challenge, after which considerable effort has been made to address the challenge. Dense Video Captioning is divided into three sub-tasks: (1) Video Feature Extraction (VFE), (2) Temporal Event Localization (TEL), and (3) Dense Caption Generation (DCG). This review aims to discuss all the studies that claim to perform DVC along with its sub-tasks and summarize their results. We also discuss all the datasets that have been used for DVC. Lastly, we highlight some emerging challenges and future trends in the field.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Iqra Qasim (1 paper)
  2. Alexander Horsch (11 papers)
  3. Dilip K. Prasad (35 papers)
Citations (2)