Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Modeling for Soft Pneumatic Actuators via Data-Driven Parameter Estimation (2311.02527v2)

Published 4 Nov 2023 in cs.RO

Abstract: Precise modeling soft robots remains a challenge due to their infinite-dimensional nature governed by partial differential equations. This paper introduces an innovative approach for modeling soft pneumatic actuators, employing a nonlinear framework through data-driven parameter estimation. The research begins by introducing Ludwick's Law, providing a accurate representation of the large deflections exhibited by soft materials. Three key material properties, namely Young's modulus, tensile stress, and mixed viscosity, are utilized to estimate the parameters inside the nonlinear model using the least squares method. Subsequently, a nonlinear dynamic model for soft actuators is constructed by applying Ludwick's Law. To validate the accuracy and effectiveness of the proposed method, several experiments are performed demonstrating the model's capabilities in predicting the dynamic behavior of soft pneumatic actuators. In conclusion, this work contributes to the advancement of soft pneumatic actuator modeling that represents their nonlinear behavior.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. F. Iida and C. Laschi, “Soft robotics: Challenges and perspectives,” Procedia Computer Science, vol. 7, no. 1, pp. 99–102, 2011.
  2. Z. Tang, P. Wang, W. Xin, Z. Xie, L. Kan, M. Mohanakrishnan, and C. Laschi, “Meta-learning-based optimal control for soft robotic manipulators to interact with unknown environments,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 982–988, IEEE, 2023.
  3. G. Alici, T. Canty, R. Mutlu, W. Hu, and V. Sencadas, “Modeling and experimental evaluation of bending behavior of soft pneumatic actuators made of discrete actuation chambers,” Soft Robotics, vol. 5, no. 1, pp. 24–35, 2018.
  4. E. Navas, R. Fernández, D. Sepúlveda, M. Armada, and P. Gonzalez-de Santos, “Soft grippers for automatic crop harvesting: A review,” Sensors, vol. 21, no. 8, p. 2689, 2021.
  5. R. Zhu, D. Fan, W. Wu, C. He, G. Xu, J. S. Dai, and H. Wang, “Soft robots for cluttered environments based on origamianisotropic stiffness structure (oass) inspired by desertiguana,” Advanced Intelligent Systems, p. 2200301, 2023.
  6. S. Zaidi, M. Maselli, C. Laschi, and M. Cianchetti, “Actuation technologies for soft robot grippers and manipulators: A review,” Current Robotics Reports, pp. 1–15, 2021.
  7. J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, and F. Iida, “Soft manipulators and grippers: a review,” Frontiers in Robotics and AI, vol. 3, p. 69, 2016.
  8. C. Armanini, F. Boyer, A. T. Mathew, C. Duriez, and F. Renda, “Soft robots modeling: A structured overview,” IEEE Transactions on Robotics, 2023.
  9. D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, vol. 521, no. 7553, pp. 467–476, 2015.
  10. R. C. Hibbeler, Mechanics of materials 8th. Pearson, New York, 2017.
  11. E. Porte, S. Eristoff, A. Agrawala, and R. Kramer-Bottiglio, “Characterization of temperature and humidity dependence in soft elastomer behavior,” Soft Robotics, 2023.
  12. L. Marechal, P. Balland, L. Lindenroth, F. Petrou, C. Kontovounisios, and F. Bello, “Toward a common framework and database of materials for soft robotics,” Soft robotics, vol. 8, no. 3, pp. 284–297, 2021.
  13. L. Chen, C. Yang, H. Wang, J. S. Bransonc, David T.and Dai, and R. Kang, “Design and modeling of a soft robotic surface with hyperelastic material.,” Mechanism and Machine Theory, vol. 130, pp. 109–122, 2018.
  14. K. Lee, “Large deflections of cantilever beams of non-linear elastic material under a combined loading,” International Journal of Non-Linear Mechanics, vol. 37, no. 3, pp. 439–443, 2002.
  15. S. Ghuku and K. N. Saha, “A review on stress and deformation analysis of curved beams under large deflection,” International Journal of Engineering and Technologies, vol. 11, pp. 13–39, 2017.
  16. M. Brojan, T. Videnic, and F. Kosel, “Large deflections of nonlinearly elastic non-prismatic cantilever beams made from materials obeying the generalized ludwick constitutive law.,” Meccanica, vol. 44, pp. 733–739, 2009.
  17. C. Della Santina, R. K. Katzschmann, A. Biechi, and D. Rus, “Dynamic control of soft robots interacting with the environment,” in IEEE International Conference on Soft Robotics (RoboSoft), pp. 46–53, IEEE, 2018.
  18. A. Doroudchi and S. Berman, “Configuration tracking for soft continuum robotic arms using inverse dynamic control of a cosserat rod model,” in IEEE International Conference on Soft Robotics (RoboSoft), pp. 207–214, IEEE, 2021.
  19. C. M. Best, M. T. Gillespie, P. Hyatt, L. Rupert, V. Sherrod, and M. D. Killpack, “A new soft robot control method: Using model predictive control for a pneumatically actuated humanoid,” IEEE Robotics and Automation Magazine, vol. 23, no. 3, pp. 75–84, 2016.
  20. M. S. Xavier, A. J. Fleming, and Y. K. Yong, “Nonlinear estimation and control of bending soft pneumatic actuators using feedback linearization and ukf,” IEEE/ASME Transactions on Mechatronics, 2022.
  21. E. H. Skorina, M. Luo, W. Tao, F. Chen, J. Fu, and C. D. Onal, “Adapting to flexibility: model reference adaptive control of soft bending actuators,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 964–970, 2017.
  22. T. Wang, Y. Zhang, Z. Chen, and S. Zhu, “Parameter identification and model-based nonlinear robust control of fluidic soft bending actuators,” IEEE/ASME transactions on mechatronics, vol. 24, no. 3, pp. 1346–1355, 2019.
  23. E. H. Skorina, M. Luo, S. Ozel, F. Chen, W. Tao, and C. D. Onal, “Feedforward augmented sliding mode motion control of antagonistic soft pneumatic actuators,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 2544–2549, IEEE, 2015.
  24. K. M. de Payrebrune and O. M. O’Reilly, “On constitutive relations for a rod-based model of a pneu-net bending actuator,” Extreme Mechanics Letters, vol. 9, pp. 38–46, 2016.
  25. T. Beda, “An approach for hyperelastic model-building and parameters estimation a review of constitutive models.,” European Polymer Journal, vol. 50, pp. 97–108, 2014.
  26. M. S. Xavier, A. J. Fleming, and Y. K. Yong, “Finite element modeling of soft fluidic actuators: Overview and recent developments,” Advanced Intelligent Systems, vol. 3, no. 2, p. 2000187, 2021.
  27. R. Valette, E. Hachem, M. Khalloufi, A. Pereira, M. Mackley, and S. Butler, “The effect of viscosity, yield stress, and surface tension on the deformation and breakup profiles of fluid filaments stretched at very high velocities,” Journal of Non-Newtonian Fluid Mechanics, vol. 263, pp. 130–139, 2019.
  28. “Smooth-on/platinum-silicone.” https://www.smooth-on.com/category/platinum-silicone/. Accessed: 2023-09-07.
  29. S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge university press, 2004.
  30. W.-T. Yang, H. S. Stuart, and M. Tomizuka, “Mechanical modeling and optimal model-based design of a soft pneumatic actuator,” in IEEE International Conference on Soft Robotics (RoboSoft), pp. 1–7, IEEE, 2023.
  31. W.-T. Yang, M. Hirao, and M. Tomizuka, “Design, modeling, and parametric analysis of a syringe pump for soft pneumatic actuators,” in IEEE International Conference on Advanced Intelligent Mechatronics(AIM), pp. 317–322, IEEE, 2023.
  32. G. Gerboni, A. Diodato, G. Ciuti, and A. Cianchetti, Matteo Menciassi, “Feedback control of soft robot actuators via commercial flex bend sensors,” IEEE/ASME Transactions on Mechatronics, vol. 22, no. 4, pp. 1881–1888, 2017.
  33. W.-T. Yang, B. Kurkcu, M. Hirao, L. Sun, X. Zhu, Z. Zhang, G. X. Gu, and M. Tomizuka, “Control of soft pneumatic actuators with approximated dynamical modeling,” in IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1–8, IEEE, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.