Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Control of Soft Pneumatic Actuators with Approximated Dynamical Modeling (2310.01740v2)

Published 3 Oct 2023 in cs.RO

Abstract: This paper introduces a full system modeling strategy for a syringe pump and soft pneumatic actuators(SPAs). The soft actuator is conceptualized as a beam structure, utilizing a second-order bending model. The equation of natural frequency is derived from Euler's bending theory, while the damping ratio is estimated by fitting step responses of soft pneumatic actuators. Evaluation of model uncertainty underscores the robustness of our modeling methodology. To validate our approach, we deploy it across four prototypes varying in dimensional parameters. Furthermore, a syringe pump is designed to drive the actuator, and a pressure model is proposed to construct a full system model. By employing this full system model, the Linear-Quadratic Regulator (LQR) controller is implemented to control the soft actuator, achieving high-speed responses and high accuracy in both step response and square wave function response tests. Both the modeling method and the LQR controller are thoroughly evaluated through experiments. Lastly, a gripper, consisting of two actuators with a feedback controller, demonstrates stable grasping of delicate objects with a significantly higher success rate.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. F. Iida and C. Laschi, “Soft robotics: Challenges and perspectives,” Procedia Computer Science, vol. 7, no. 1, pp. 99–102, 2011.
  2. W.-T. Yang and M. Tomizuka, “Design a multifunctional soft tactile sensor enhanced by machine learning approaches,” ASME Journal of Dynamic Systems, Measurement, and Control, vol. 144, no. 8, p. 081006, 2022.
  3. K. G. Demir, Z. Zhang, J. Yang, and G. X. Gu, “Computational and experimental design exploration of 3d‐printed soft pneumatic actuators,” Advanced Intelligent Systems, vol. 2, p. 7, 2020.
  4. E. Navas, R. Fernández, D. Sepúlveda, M. Armada, and P. Gonzalez-de Santos, “Soft grippers for automatic crop harvesting: A review,” Sensors, vol. 21, no. 8, p. 2689, 2021.
  5. T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Wang, zhongkui and or, keung and hirai, shinichi,” Robotics and Autonomous Systems, vol. 125, p. 103427, 2020.
  6. S. Zaidi, M. Maselli, C. Laschi, and M. Cianchetti, “Actuation technologies for soft robot grippers and manipulators: A review,” Current Robotics Reports, pp. 1–15, 2021.
  7. Z. Zhang, Z. Jin, and G. X. Gu, “Efficient pneumatic actuation modeling using hybrid physics-based and data-driven framework,” Cell Reports Physical Science, vol. 3, no. 4, p. 100842, 2022.
  8. J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, and F. Iida, “Soft manipulators and grippers: a review,” Frontiers in Robotics and AI, vol. 3, p. 69, 2016.
  9. G. Cao, B. Huo, L. Yang, F. Zhang, Y. Liu, and G. Bian, “Model-based robust tracking control without observers for soft bending actuators,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5175–5182, 2021.
  10. M. S. Xavier, A. J. Fleming, and Y. K. Yong, “Nonlinear estimation and control of bending soft pneumatic actuators using feedback linearization and ukf,” IEEE/ASME Transactions on Mechatronics, 2022.
  11. T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, “Control strategies for soft robotic manipulators: A survey,” Soft robotics, vol. 5, no. 2, pp. 149–163, 2018.
  12. E. H. Skorina, M. Luo, W. Tao, F. Chen, J. Fu, and C. D. Onal, “Adapting to flexibility: model reference adaptive control of soft bending actuators,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 964–970, 2017.
  13. T. Wang, Y. Zhang, Z. Chen, and S. Zhu, “Parameter identification and model-based nonlinear robust control of fluidic soft bending actuators,” IEEE/ASME transactions on mechatronics, vol. 24, no. 3, pp. 1346–1355, 2019.
  14. E. H. Skorina, M. Luo, S. Ozel, F. Chen, W. Tao, and C. D. Onal, “Feedforward augmented sliding mode motion control of antagonistic soft pneumatic actuators,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2544–2549, IEEE, 2015.
  15. E. H. Skorina, W. Tao, F. Chen, M. Luo, and C. D. Onal, “Motion control of a soft-actuated modular manipulator,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 4997–5002, IEEE, 2016.
  16. M. d. S. Xavier, A. J. Fleming, and Y. K. K. Yong, “Model-based nonlinear feedback controllers for pressure control of soft pneumatic actuators using on/off valves,” Frontiers in Robotics and AI, p. 33, 2022.
  17. Z. Q. Tang, H. L. Heung, K. Y. Tong, and Z. Li, “Model-based online learning and adaptive control for a “human-wearable soft robot” integrated system,” The International Journal of Robotics Research, vol. 40, no. 1, pp. 256–276, 2021.
  18. R. C. Hibbeler, Mechanics of materials 8th. Pearson, New York, 2017.
  19. C. Della Santina, R. K. Katzschmann, A. Biechi, and D. Rus, “Dynamic control of soft robots interacting with the environment,” in IEEE International Conference on Soft Robotics (RoboSoft), pp. 46–53, IEEE, 2018.
  20. K. M. de Payrebrune and O. M. O’Reilly, “On constitutive relations for a rod-based model of a pneu-net bending actuator,” Extreme Mechanics Letters, vol. 9, pp. 38–46, 2016.
  21. A. Doroudchi and S. Berman, “Configuration tracking for soft continuum robotic arms using inverse dynamic control of a cosserat rod model,” in IEEE International Conference on Soft Robotics (RoboSoft), pp. 207–214, IEEE, 2021.
  22. A. S. Lafmejani, H. Farivarnejad, A. Doroudchi, and S. Berman, “A consensus strategy for decentralized kinematic control of multi-segment soft continuum robots,” in 2020 American Control Conference (ACC), pp. 909–916, IEEE, 2020.
  23. C. M. Best, M. T. Gillespie, P. Hyatt, L. Rupert, V. Sherrod, and M. D. Killpack, “A new soft robot control method: Using model predictive control for a pneumatically actuated humanoid,” IEEE Robotics and Automation Magazine, vol. 23, no. 3, pp. 75–84, 2016.
  24. T. George Thuruthel, F. Renda, and F. Iida, “First-order dynamic modeling and control of soft robots,” Frontiers in Robotics and AI, vol. 7, p. 95, 2019.
  25. T. Kalisky, Y. Wang, B. Shih, D. Drotman, S. Jadhav, E. Aronoff-Spencer, and M. T. Tolley, “Differential pressure control of 3d printed soft fluidic actuators,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6207–6213, IEEE, 2017.
  26. M. S. Xavier, A. J. Fleming, and Y. K. Yong, “Image-guided locomotion of a pneumatic-driven peristaltic soft robot,” in 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2269–2274, IEEE, 2019.
  27. Z. Wang and S. Hirai, “Soft gripper dynamics using a line-segment model with an optimization-based parameter identification method,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 624–631, 2017.
  28. A. D. Marchese, K. Komorowski, C. D. Onal, and D. Rus, “Design and control of a soft and continuously deformable 2d robotic manipulation system,” in 2014 IEEE international conference on robotics and automation (ICRA), pp. 2189–2196, IEEE, 2014.
  29. W. Shi and M. B. Wijesundara, “Angular velocity control of pneumatic soft robotic digits,” ASME Letters in Dynamic Systems and Control, vol. 1, no. 3, 2021.
  30. G. Belforte, F. Dabbene, and P. Gay, “Sensor design, identification and control of a deformable pneumatic actuator,” International Journal of Mechanics and Control, vol. 4, no. 1, pp. 3–13, 2003.
  31. M. Thieffry, A. Kruszewski, C. Duriez, and T.-M. Guerra, “Control design for soft robots based on reduced-order model,” IEEE Robotics and Automation Letters, vol. 4, no. 1, pp. 25–32, 2018.
  32. M. S. Xavier, A. J. Fleming, and Y. K. Yong, “Design and control of pneumatic systems for soft robotics: A simulation approach,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5800–5807, 2021.
  33. W.-T. Yang, M. Hirao, and M. Tomizuka, “Design, modeling, and parametric analysis of a syringe pump for soft pneumatic actuators,” in 2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 317–322, IEEE, 2023.
  34. W.-T. Yang, H. S. Stuart, and M. Tomizuka, “Mechanical modeling and optimal model-based design of a soft pneumatic actuator,” in 2023 IEEE International Conference on Soft Robotics (RoboSoft), IEEE, 2023 (accepted).
  35. A. Bayrak, B. Kürkçü, and M. Ö. Efe, “A new adaptive disturbance/uncertainty estimator based control scheme for lti systems,” IEEE Access, vol. 10, pp. 106849–106858, 2022.
  36. B. Kürkçü, C. Kasnakoğlu, and M. Ö. Efe, “Disturbance/uncertainty estimator based robust control of nonminimum phase systems,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 4, pp. 1941–1951, 2018.
  37. B. D. Anderson and J. B. Moore, Optimal control: linear quadratic methods. Courier Corporation, 2007.
  38. Springer Science and Business Media, 2013.
  39. “Ecoflex Dragon Skin 20.” https://www.smooth-on.com/products/dragon-skin-20/. Accessed: 2022-06-07.
  40. X. Zhu, L. Sun, Y. Fan, and M. Tomizuka, “6-dof contrastive grasp proposal network,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 6371–6377, 2021.
  41. L. Sun, H. Zhang, W. Xu, and M. Tomizuka, “Paco: Parameter-compositional multi-task reinforcement learning,” in NeurIPS, 2022.
Citations (3)

Summary

We haven't generated a summary for this paper yet.