Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Phase diagram of QCD matter with magnetic field: domain-wall Skyrmion chain in chiral soliton lattice (2311.01112v3)

Published 2 Nov 2023 in hep-ph and hep-th

Abstract: QCD matter in strong magnetic field exhibits a rich phase structure. In the presence of an external magnetic field, the chiral Lagrangian for two flavors is accompanied by the Wess-Zumino-Witten (WZW) term containing an anomalous coupling of the neutral pion $\pi_0$ to the magnetic field via the chiral anomaly. Due to this term, the ground state is inhomogeneous in the form of either chiral soliton lattice (CSL), an array of solitons in the direction of magnetic field, or domain-wall Skyrmion (DWSk) phase in which Skyrmions supported by $\pi_3[{\rm SU}(2)] \simeq {\mathbb Z}$ appear inside the solitons as topological lumps supported by $\pi_2(S2) \simeq {\mathbb Z}$ in the effective worldvolume theory of the soliton. In this paper, we determine the phase boundary between the CSL and DWSk phases beyond the single-soliton approximation, within the leading order of chiral perturbation theory. To this end, we explore a domain-wall Skyrmion chain in multiple soliton configurations. First, we construct the effective theory of the CSL by the moduli approximation, and obtain the ${\mathbb C}P1$ model or O(3) model, gauged by a background electromagnetic gauge field, with two kinds of topological terms coming from the WZW term: one is the topological lump charge in 2+1 dimensional worldvolume and the other is a topological term counting the soliton number. Topological lumps in the 2+1 dimensional worldvolume theory are superconducting rings and their sizes are constrained by the flux quantization condition. The negative energy condition of the lumps yields the phase boundary between the CSL and DWSk phases. We find that a large region inside the CSL is occupied by the DWSk phase, and that the CSL remains metastable in the DWSk phase in the vicinity of the phase boundary.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube